Home Home > GIT Browse
summaryrefslogtreecommitdiff
blob: 28068ec614b24da11b9cb3e9a390abb7aea5f47a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#ifndef __NET_SCHED_RED_H
#define __NET_SCHED_RED_H

#include <linux/types.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
#include <net/dsfield.h>
#include <linux/reciprocal_div.h>

/*	Random Early Detection (RED) algorithm.
	=======================================

	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.

	This file codes a "divisionless" version of RED algorithm
	as written down in Fig.17 of the paper.

	Short description.
	------------------

	When a new packet arrives we calculate the average queue length:

	avg = (1-W)*avg + W*current_queue_len,

	W is the filter time constant (chosen as 2^(-Wlog)), it controls
	the inertia of the algorithm. To allow larger bursts, W should be
	decreased.

	if (avg > th_max) -> packet marked (dropped).
	if (avg < th_min) -> packet passes.
	if (th_min < avg < th_max) we calculate probability:

	Pb = max_P * (avg - th_min)/(th_max-th_min)

	and mark (drop) packet with this probability.
	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
	max_P should be small (not 1), usually 0.01..0.02 is good value.

	max_P is chosen as a number, so that max_P/(th_max-th_min)
	is a negative power of two in order arithmetics to contain
	only shifts.


	Parameters, settable by user:
	-----------------------------

	qth_min		- bytes (should be < qth_max/2)
	qth_max		- bytes (should be at least 2*qth_min and less limit)
	Wlog	       	- bits (<32) log(1/W).
	Plog	       	- bits (<32)

	Plog is related to max_P by formula:

	max_P = (qth_max-qth_min)/2^Plog;

	F.e. if qth_max=128K and qth_min=32K, then Plog=22
	corresponds to max_P=0.02

	Scell_log
	Stab

	Lookup table for log((1-W)^(t/t_ave).


	NOTES:

	Upper bound on W.
	-----------------

	If you want to allow bursts of L packets of size S,
	you should choose W:

	L + 1 - th_min/S < (1-(1-W)^L)/W

	th_min/S = 32         th_min/S = 4

	log(W)	L
	-1	33
	-2	35
	-3	39
	-4	46
	-5	57
	-6	75
	-7	101
	-8	135
	-9	190
	etc.
 */

/*
 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
 *
 * Every 500 ms:
 *  if (avg > target and max_p <= 0.5)
 *   increase max_p : max_p += alpha;
 *  else if (avg < target and max_p >= 0.01)
 *   decrease max_p : max_p *= beta;
 *
 * target :[qth_min + 0.4*(qth_min - qth_max),
 *          qth_min + 0.6*(qth_min - qth_max)].
 * alpha : min(0.01, max_p / 4)
 * beta : 0.9
 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
 */
#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))

#define MAX_P_MIN (1 * RED_ONE_PERCENT)
#define MAX_P_MAX (50 * RED_ONE_PERCENT)
#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)

#define RED_STAB_SIZE	256
#define RED_STAB_MASK	(RED_STAB_SIZE - 1)

struct red_stats {
	u32		prob_drop;	/* Early probability drops */
	u32		prob_mark;	/* Early probability marks */
	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
	u32		pdrop;          /* Drops due to queue limits */
	u32		other;          /* Drops due to drop() calls */
};

struct red_parms {
	/* Parameters */
	u32		qth_min;	/* Min avg length threshold: Wlog scaled */
	u32		qth_max;	/* Max avg length threshold: Wlog scaled */
	u32		Scell_max;
	u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */
	u32		max_P_reciprocal; /* reciprocal_value(max_P / qth_delta) */
	u32		qth_delta;	/* max_th - min_th */
	u32		target_min;	/* min_th + 0.4*(max_th - min_th) */
	u32		target_max;	/* min_th + 0.6*(max_th - min_th) */
	u8		Scell_log;
	u8		Wlog;		/* log(W)		*/
	u8		Plog;		/* random number bits	*/
	u8		Stab[RED_STAB_SIZE];
};

struct red_vars {
	/* Variables */
	int		qcount;		/* Number of packets since last random
					   number generation */
	u32		qR;		/* Cached random number */

	unsigned long	qavg;		/* Average queue length: Wlog scaled */
	ktime_t		qidlestart;	/* Start of current idle period */
};

static inline u32 red_maxp(u8 Plog)
{
	return Plog < 32 ? (~0U >> Plog) : ~0U;
}

static inline void red_set_vars(struct red_vars *v)
{
	/* Reset average queue length, the value is strictly bound
	 * to the parameters below, reseting hurts a bit but leaving
	 * it might result in an unreasonable qavg for a while. --TGR
	 */
	v->qavg		= 0;

	v->qcount	= -1;
}

static inline void red_set_parms(struct red_parms *p,
				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
				 u8 Scell_log, u8 *stab, u32 max_P)
{
	int delta = qth_max - qth_min;
	u32 max_p_delta;

	p->qth_min	= qth_min << Wlog;
	p->qth_max	= qth_max << Wlog;
	p->Wlog		= Wlog;
	p->Plog		= Plog;
	if (delta < 0)
		delta = 1;
	p->qth_delta	= delta;
	if (!max_P) {
		max_P = red_maxp(Plog);
		max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
	}
	p->max_P = max_P;
	max_p_delta = max_P / delta;
	max_p_delta = max(max_p_delta, 1U);
	p->max_P_reciprocal  = reciprocal_value(max_p_delta);

	/* RED Adaptative target :
	 * [min_th + 0.4*(min_th - max_th),
	 *  min_th + 0.6*(min_th - max_th)].
	 */
	delta /= 5;
	p->target_min = qth_min + 2*delta;
	p->target_max = qth_min + 3*delta;

	p->Scell_log	= Scell_log;
	p->Scell_max	= (255 << Scell_log);

	if (stab)
		memcpy(p->Stab, stab, sizeof(p->Stab));
}

static inline int red_is_idling(const struct red_vars *v)
{
	return v->qidlestart.tv64 != 0;
}

static inline void red_start_of_idle_period(struct red_vars *v)
{
	v->qidlestart = ktime_get();
}

static inline void red_end_of_idle_period(struct red_vars *v)
{
	v->qidlestart.tv64 = 0;
}

static inline void red_restart(struct red_vars *v)
{
	red_end_of_idle_period(v);
	v->qavg = 0;
	v->qcount = -1;
}

static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
							 const struct red_vars *v)
{
	s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
	long us_idle = min_t(s64, delta, p->Scell_max);
	int  shift;

	/*
	 * The problem: ideally, average length queue recalcultion should
	 * be done over constant clock intervals. This is too expensive, so
	 * that the calculation is driven by outgoing packets.
	 * When the queue is idle we have to model this clock by hand.
	 *
	 * SF+VJ proposed to "generate":
	 *
	 *	m = idletime / (average_pkt_size / bandwidth)
	 *
	 * dummy packets as a burst after idle time, i.e.
	 *
	 * 	p->qavg *= (1-W)^m
	 *
	 * This is an apparently overcomplicated solution (f.e. we have to
	 * precompute a table to make this calculation in reasonable time)
	 * I believe that a simpler model may be used here,
	 * but it is field for experiments.
	 */

	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];

	if (shift)
		return v->qavg >> shift;
	else {
		/* Approximate initial part of exponent with linear function:
		 *
		 * 	(1-W)^m ~= 1-mW + ...
		 *
		 * Seems, it is the best solution to
		 * problem of too coarse exponent tabulation.
		 */
		us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;

		if (us_idle < (v->qavg >> 1))
			return v->qavg - us_idle;
		else
			return v->qavg >> 1;
	}
}

static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
						       const struct red_vars *v,
						       unsigned int backlog)
{
	/*
	 * NOTE: p->qavg is fixed point number with point at Wlog.
	 * The formula below is equvalent to floating point
	 * version:
	 *
	 * 	qavg = qavg*(1-W) + backlog*W;
	 *
	 * --ANK (980924)
	 */
	return v->qavg + (backlog - (v->qavg >> p->Wlog));
}

static inline unsigned long red_calc_qavg(const struct red_parms *p,
					  const struct red_vars *v,
					  unsigned int backlog)
{
	if (!red_is_idling(v))
		return red_calc_qavg_no_idle_time(p, v, backlog);
	else
		return red_calc_qavg_from_idle_time(p, v);
}


static inline u32 red_random(const struct red_parms *p)
{
	return reciprocal_divide(net_random(), p->max_P_reciprocal);
}

static inline int red_mark_probability(const struct red_parms *p,
				       const struct red_vars *v,
				       unsigned long qavg)
{
	/* The formula used below causes questions.

	   OK. qR is random number in the interval
		(0..1/max_P)*(qth_max-qth_min)
	   i.e. 0..(2^Plog). If we used floating point
	   arithmetics, it would be: (2^Plog)*rnd_num,
	   where rnd_num is less 1.

	   Taking into account, that qavg have fixed
	   point at Wlog, two lines
	   below have the following floating point equivalent:

	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount

	   Any questions? --ANK (980924)
	 */
	return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
}

enum {
	RED_BELOW_MIN_THRESH,
	RED_BETWEEN_TRESH,
	RED_ABOVE_MAX_TRESH,
};

static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
{
	if (qavg < p->qth_min)
		return RED_BELOW_MIN_THRESH;
	else if (qavg >= p->qth_max)
		return RED_ABOVE_MAX_TRESH;
	else
		return RED_BETWEEN_TRESH;
}

enum {
	RED_DONT_MARK,
	RED_PROB_MARK,
	RED_HARD_MARK,
};

static inline int red_action(const struct red_parms *p,
			     struct red_vars *v,
			     unsigned long qavg)
{
	switch (red_cmp_thresh(p, qavg)) {
		case RED_BELOW_MIN_THRESH:
			v->qcount = -1;
			return RED_DONT_MARK;

		case RED_BETWEEN_TRESH:
			if (++v->qcount) {
				if (red_mark_probability(p, v, qavg)) {
					v->qcount = 0;
					v->qR = red_random(p);
					return RED_PROB_MARK;
				}
			} else
				v->qR = red_random(p);

			return RED_DONT_MARK;

		case RED_ABOVE_MAX_TRESH:
			v->qcount = -1;
			return RED_HARD_MARK;
	}

	BUG();
	return RED_DONT_MARK;
}

static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
{
	unsigned long qavg;
	u32 max_p_delta;

	qavg = v->qavg;
	if (red_is_idling(v))
		qavg = red_calc_qavg_from_idle_time(p, v);

	/* p->qavg is fixed point number with point at Wlog */
	qavg >>= p->Wlog;

	if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
		p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
	else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
		p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */

	max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
	max_p_delta = max(max_p_delta, 1U);
	p->max_P_reciprocal = reciprocal_value(max_p_delta);
}
#endif