Home Home > GIT Browse
summaryrefslogtreecommitdiff
blob: d49928ba5d09fa379fd5db91ea173cfe08d57475 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
/*
 * mac80211 <-> driver interface
 *
 * Copyright 2002-2005, Devicescape Software, Inc.
 * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
 * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#ifndef MAC80211_H
#define MAC80211_H

#include <linux/kernel.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/device.h>
#include <linux/ieee80211.h>
#include <net/cfg80211.h>
#include <asm/unaligned.h>

/**
 * DOC: Introduction
 *
 * mac80211 is the Linux stack for 802.11 hardware that implements
 * only partial functionality in hard- or firmware. This document
 * defines the interface between mac80211 and low-level hardware
 * drivers.
 */

/**
 * DOC: Calling mac80211 from interrupts
 *
 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
 * called in hardware interrupt context. The low-level driver must not call any
 * other functions in hardware interrupt context. If there is a need for such
 * call, the low-level driver should first ACK the interrupt and perform the
 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
 * tasklet function.
 *
 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
 *	 use the non-IRQ-safe functions!
 */

/**
 * DOC: Warning
 *
 * If you're reading this document and not the header file itself, it will
 * be incomplete because not all documentation has been converted yet.
 */

/**
 * DOC: Frame format
 *
 * As a general rule, when frames are passed between mac80211 and the driver,
 * they start with the IEEE 802.11 header and include the same octets that are
 * sent over the air except for the FCS which should be calculated by the
 * hardware.
 *
 * There are, however, various exceptions to this rule for advanced features:
 *
 * The first exception is for hardware encryption and decryption offload
 * where the IV/ICV may or may not be generated in hardware.
 *
 * Secondly, when the hardware handles fragmentation, the frame handed to
 * the driver from mac80211 is the MSDU, not the MPDU.
 *
 * Finally, for received frames, the driver is able to indicate that it has
 * filled a radiotap header and put that in front of the frame; if it does
 * not do so then mac80211 may add this under certain circumstances.
 */

/**
 * DOC: mac80211 workqueue
 *
 * mac80211 provides its own workqueue for drivers and internal mac80211 use.
 * The workqueue is a single threaded workqueue and can only be accessed by
 * helpers for sanity checking. Drivers must ensure all work added onto the
 * mac80211 workqueue should be cancelled on the driver stop() callback.
 *
 * mac80211 will flushed the workqueue upon interface removal and during
 * suspend.
 *
 * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
 *
 */

/**
 * enum ieee80211_max_queues - maximum number of queues
 *
 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
 */
enum ieee80211_max_queues {
	IEEE80211_MAX_QUEUES =		4,
};

/**
 * enum ieee80211_ac_numbers - AC numbers as used in mac80211
 * @IEEE80211_AC_VO: voice
 * @IEEE80211_AC_VI: video
 * @IEEE80211_AC_BE: best effort
 * @IEEE80211_AC_BK: background
 */
enum ieee80211_ac_numbers {
	IEEE80211_AC_VO		= 0,
	IEEE80211_AC_VI		= 1,
	IEEE80211_AC_BE		= 2,
	IEEE80211_AC_BK		= 3,
};
#define IEEE80211_NUM_ACS	4

/**
 * struct ieee80211_tx_queue_params - transmit queue configuration
 *
 * The information provided in this structure is required for QoS
 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
 *
 * @aifs: arbitration interframe space [0..255]
 * @cw_min: minimum contention window [a value of the form
 *	2^n-1 in the range 1..32767]
 * @cw_max: maximum contention window [like @cw_min]
 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
 * @uapsd: is U-APSD mode enabled for the queue
 */
struct ieee80211_tx_queue_params {
	u16 txop;
	u16 cw_min;
	u16 cw_max;
	u8 aifs;
	bool uapsd;
};

struct ieee80211_low_level_stats {
	unsigned int dot11ACKFailureCount;
	unsigned int dot11RTSFailureCount;
	unsigned int dot11FCSErrorCount;
	unsigned int dot11RTSSuccessCount;
};

/**
 * enum ieee80211_bss_change - BSS change notification flags
 *
 * These flags are used with the bss_info_changed() callback
 * to indicate which BSS parameter changed.
 *
 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
 *	also implies a change in the AID.
 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
 * @BSS_CHANGED_ERP_SLOT: slot timing changed
 * @BSS_CHANGED_HT: 802.11n parameters changed
 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
 *	reason (IBSS and managed mode)
 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
 *	new beacon (beaconing modes)
 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
 *	enabled/disabled (beaconing modes)
 * @BSS_CHANGED_CQM: Connection quality monitor config changed
 * @BSS_CHANGED_IBSS: IBSS join status changed
 * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed.
 * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note
 *	that it is only ever disabled for station mode.
 * @BSS_CHANGED_IDLE: Idle changed for this BSS/interface.
 * @BSS_CHANGED_SSID: SSID changed for this BSS (AP mode)
 * @BSS_CHANGED_AP_PROBE_RESP: Probe Response changed for this BSS (AP mode)
 */
enum ieee80211_bss_change {
	BSS_CHANGED_ASSOC		= 1<<0,
	BSS_CHANGED_ERP_CTS_PROT	= 1<<1,
	BSS_CHANGED_ERP_PREAMBLE	= 1<<2,
	BSS_CHANGED_ERP_SLOT		= 1<<3,
	BSS_CHANGED_HT			= 1<<4,
	BSS_CHANGED_BASIC_RATES		= 1<<5,
	BSS_CHANGED_BEACON_INT		= 1<<6,
	BSS_CHANGED_BSSID		= 1<<7,
	BSS_CHANGED_BEACON		= 1<<8,
	BSS_CHANGED_BEACON_ENABLED	= 1<<9,
	BSS_CHANGED_CQM			= 1<<10,
	BSS_CHANGED_IBSS		= 1<<11,
	BSS_CHANGED_ARP_FILTER		= 1<<12,
	BSS_CHANGED_QOS			= 1<<13,
	BSS_CHANGED_IDLE		= 1<<14,
	BSS_CHANGED_SSID		= 1<<15,
	BSS_CHANGED_AP_PROBE_RESP	= 1<<16,

	/* when adding here, make sure to change ieee80211_reconfig */
};

/*
 * The maximum number of IPv4 addresses listed for ARP filtering. If the number
 * of addresses for an interface increase beyond this value, hardware ARP
 * filtering will be disabled.
 */
#define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4

/**
 * enum ieee80211_rssi_event - RSSI threshold event
 * An indicator for when RSSI goes below/above a certain threshold.
 * @RSSI_EVENT_HIGH: AP's rssi crossed the high threshold set by the driver.
 * @RSSI_EVENT_LOW: AP's rssi crossed the low threshold set by the driver.
 */
enum ieee80211_rssi_event {
	RSSI_EVENT_HIGH,
	RSSI_EVENT_LOW,
};

/**
 * struct ieee80211_bss_conf - holds the BSS's changing parameters
 *
 * This structure keeps information about a BSS (and an association
 * to that BSS) that can change during the lifetime of the BSS.
 *
 * @assoc: association status
 * @ibss_joined: indicates whether this station is part of an IBSS
 *	or not
 * @aid: association ID number, valid only when @assoc is true
 * @use_cts_prot: use CTS protection
 * @use_short_preamble: use 802.11b short preamble;
 *	if the hardware cannot handle this it must set the
 *	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
 * @use_short_slot: use short slot time (only relevant for ERP);
 *	if the hardware cannot handle this it must set the
 *	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
 * @dtim_period: num of beacons before the next DTIM, for beaconing,
 *	valid in station mode only while @assoc is true and if also
 *	requested by %IEEE80211_HW_NEED_DTIM_PERIOD (cf. also hw conf
 *	@ps_dtim_period)
 * @timestamp: beacon timestamp
 * @beacon_int: beacon interval
 * @assoc_capability: capabilities taken from assoc resp
 * @basic_rates: bitmap of basic rates, each bit stands for an
 *	index into the rate table configured by the driver in
 *	the current band.
 * @mcast_rate: per-band multicast rate index + 1 (0: disabled)
 * @bssid: The BSSID for this BSS
 * @enable_beacon: whether beaconing should be enabled or not
 * @channel_type: Channel type for this BSS -- the hardware might be
 *	configured for HT40+ while this BSS only uses no-HT, for
 *	example.
 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
 *	This field is only valid when the channel type is one of the HT types.
 * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value
 *	implies disabled
 * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis
 * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The
 *	may filter ARP queries targeted for other addresses than listed here.
 *	The driver must allow ARP queries targeted for all address listed here
 *	to pass through. An empty list implies no ARP queries need to pass.
 * @arp_addr_cnt: Number of addresses currently on the list.
 * @arp_filter_enabled: Enable ARP filtering - if enabled, the hardware may
 *	filter ARP queries based on the @arp_addr_list, if disabled, the
 *	hardware must not perform any ARP filtering. Note, that the filter will
 *	be enabled also in promiscuous mode.
 * @qos: This is a QoS-enabled BSS.
 * @idle: This interface is idle. There's also a global idle flag in the
 *	hardware config which may be more appropriate depending on what
 *	your driver/device needs to do.
 * @ssid: The SSID of the current vif. Only valid in AP-mode.
 * @ssid_len: Length of SSID given in @ssid.
 * @hidden_ssid: The SSID of the current vif is hidden. Only valid in AP-mode.
 */
struct ieee80211_bss_conf {
	const u8 *bssid;
	/* association related data */
	bool assoc, ibss_joined;
	u16 aid;
	/* erp related data */
	bool use_cts_prot;
	bool use_short_preamble;
	bool use_short_slot;
	bool enable_beacon;
	u8 dtim_period;
	u16 beacon_int;
	u16 assoc_capability;
	u64 timestamp;
	u32 basic_rates;
	int mcast_rate[IEEE80211_NUM_BANDS];
	u16 ht_operation_mode;
	s32 cqm_rssi_thold;
	u32 cqm_rssi_hyst;
	enum nl80211_channel_type channel_type;
	__be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN];
	u8 arp_addr_cnt;
	bool arp_filter_enabled;
	bool qos;
	bool idle;
	u8 ssid[IEEE80211_MAX_SSID_LEN];
	size_t ssid_len;
	bool hidden_ssid;
};

/**
 * enum mac80211_tx_control_flags - flags to describe transmission information/status
 *
 * These flags are used with the @flags member of &ieee80211_tx_info.
 *
 * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame.
 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
 *	number to this frame, taking care of not overwriting the fragment
 *	number and increasing the sequence number only when the
 *	IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
 *	assign sequence numbers to QoS-data frames but cannot do so correctly
 *	for non-QoS-data and management frames because beacons need them from
 *	that counter as well and mac80211 cannot guarantee proper sequencing.
 *	If this flag is set, the driver should instruct the hardware to
 *	assign a sequence number to the frame or assign one itself. Cf. IEEE
 *	802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
 *	beacons and always be clear for frames without a sequence number field.
 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
 *	station
 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
 *	because the destination STA was in powersave mode. Note that to
 *	avoid race conditions, the filter must be set by the hardware or
 *	firmware upon receiving a frame that indicates that the station
 *	went to sleep (must be done on device to filter frames already on
 *	the queue) and may only be unset after mac80211 gives the OK for
 *	that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
 *	since only then is it guaranteed that no more frames are in the
 *	hardware queue.
 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
 * 	is for the whole aggregation.
 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
 * 	so consider using block ack request (BAR).
 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
 *	set by rate control algorithms to indicate probe rate, will
 *	be cleared for fragmented frames (except on the last fragment)
 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
 *	used to indicate that a pending frame requires TX processing before
 *	it can be sent out.
 * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
 *	used to indicate that a frame was already retried due to PS
 * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
 *	used to indicate frame should not be encrypted
 * @IEEE80211_TX_CTL_POLL_RESPONSE: This frame is a response to a poll
 *	frame (PS-Poll or uAPSD) and should be sent although the station
 *	is in powersave mode.
 * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
 *	transmit function after the current frame, this can be used
 *	by drivers to kick the DMA queue only if unset or when the
 *	queue gets full.
 * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted
 *	after TX status because the destination was asleep, it must not
 *	be modified again (no seqno assignment, crypto, etc.)
 * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211
 *	MLME command (internal to mac80211 to figure out whether to send TX
 *	status to user space)
 * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame
 * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this
 *	frame and selects the maximum number of streams that it can use.
 * @IEEE80211_TX_CTL_TX_OFFCHAN: Marks this packet to be transmitted on
 *	the off-channel channel when a remain-on-channel offload is done
 *	in hardware -- normal packets still flow and are expected to be
 *	handled properly by the device.
 * @IEEE80211_TX_INTFL_TKIP_MIC_FAILURE: Marks this packet to be used for TKIP
 *	testing. It will be sent out with incorrect Michael MIC key to allow
 *	TKIP countermeasures to be tested.
 * @IEEE80211_TX_CTL_NO_CCK_RATE: This frame will be sent at non CCK rate.
 *	This flag is actually used for management frame especially for P2P
 *	frames not being sent at CCK rate in 2GHz band.
 * @IEEE80211_TX_STATUS_EOSP: This packet marks the end of service period,
 *	when its status is reported the service period ends. For frames in
 *	an SP that mac80211 transmits, it is already set; for driver frames
 *	the driver may set this flag. It is also used to do the same for
 *	PS-Poll responses.
 * @IEEE80211_TX_CTL_USE_MINRATE: This frame will be sent at lowest rate.
 *	This flag is used to send nullfunc frame at minimum rate when
 *	the nullfunc is used for connection monitoring purpose.
 * @IEEE80211_TX_CTL_DONTFRAG: Don't fragment this packet even if it
 *	would be fragmented by size (this is optional, only used for
 *	monitor injection).
 *
 * Note: If you have to add new flags to the enumeration, then don't
 *	 forget to update %IEEE80211_TX_TEMPORARY_FLAGS when necessary.
 */
enum mac80211_tx_control_flags {
	IEEE80211_TX_CTL_REQ_TX_STATUS		= BIT(0),
	IEEE80211_TX_CTL_ASSIGN_SEQ		= BIT(1),
	IEEE80211_TX_CTL_NO_ACK			= BIT(2),
	IEEE80211_TX_CTL_CLEAR_PS_FILT		= BIT(3),
	IEEE80211_TX_CTL_FIRST_FRAGMENT		= BIT(4),
	IEEE80211_TX_CTL_SEND_AFTER_DTIM	= BIT(5),
	IEEE80211_TX_CTL_AMPDU			= BIT(6),
	IEEE80211_TX_CTL_INJECTED		= BIT(7),
	IEEE80211_TX_STAT_TX_FILTERED		= BIT(8),
	IEEE80211_TX_STAT_ACK			= BIT(9),
	IEEE80211_TX_STAT_AMPDU			= BIT(10),
	IEEE80211_TX_STAT_AMPDU_NO_BACK		= BIT(11),
	IEEE80211_TX_CTL_RATE_CTRL_PROBE	= BIT(12),
	IEEE80211_TX_INTFL_NEED_TXPROCESSING	= BIT(14),
	IEEE80211_TX_INTFL_RETRIED		= BIT(15),
	IEEE80211_TX_INTFL_DONT_ENCRYPT		= BIT(16),
	IEEE80211_TX_CTL_POLL_RESPONSE		= BIT(17),
	IEEE80211_TX_CTL_MORE_FRAMES		= BIT(18),
	IEEE80211_TX_INTFL_RETRANSMISSION	= BIT(19),
	/* hole at 20, use later */
	IEEE80211_TX_INTFL_NL80211_FRAME_TX	= BIT(21),
	IEEE80211_TX_CTL_LDPC			= BIT(22),
	IEEE80211_TX_CTL_STBC			= BIT(23) | BIT(24),
	IEEE80211_TX_CTL_TX_OFFCHAN		= BIT(25),
	IEEE80211_TX_INTFL_TKIP_MIC_FAILURE	= BIT(26),
	IEEE80211_TX_CTL_NO_CCK_RATE		= BIT(27),
	IEEE80211_TX_STATUS_EOSP		= BIT(28),
	IEEE80211_TX_CTL_USE_MINRATE		= BIT(29),
	IEEE80211_TX_CTL_DONTFRAG		= BIT(30),
};

#define IEEE80211_TX_CTL_STBC_SHIFT		23

/*
 * This definition is used as a mask to clear all temporary flags, which are
 * set by the tx handlers for each transmission attempt by the mac80211 stack.
 */
#define IEEE80211_TX_TEMPORARY_FLAGS (IEEE80211_TX_CTL_NO_ACK |		      \
	IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT |    \
	IEEE80211_TX_CTL_SEND_AFTER_DTIM | IEEE80211_TX_CTL_AMPDU |	      \
	IEEE80211_TX_STAT_TX_FILTERED |	IEEE80211_TX_STAT_ACK |		      \
	IEEE80211_TX_STAT_AMPDU | IEEE80211_TX_STAT_AMPDU_NO_BACK |	      \
	IEEE80211_TX_CTL_RATE_CTRL_PROBE | IEEE80211_TX_CTL_POLL_RESPONSE |   \
	IEEE80211_TX_CTL_MORE_FRAMES | IEEE80211_TX_CTL_LDPC |		      \
	IEEE80211_TX_CTL_STBC | IEEE80211_TX_STATUS_EOSP)

/**
 * enum mac80211_rate_control_flags - per-rate flags set by the
 *	Rate Control algorithm.
 *
 * These flags are set by the Rate control algorithm for each rate during tx,
 * in the @flags member of struct ieee80211_tx_rate.
 *
 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
 *	This is set if the current BSS requires ERP protection.
 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
 * @IEEE80211_TX_RC_MCS: HT rate.
 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
 *	Greenfield mode.
 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
 *	adjacent 20 MHz channels, if the current channel type is
 *	NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
 */
enum mac80211_rate_control_flags {
	IEEE80211_TX_RC_USE_RTS_CTS		= BIT(0),
	IEEE80211_TX_RC_USE_CTS_PROTECT		= BIT(1),
	IEEE80211_TX_RC_USE_SHORT_PREAMBLE	= BIT(2),

	/* rate index is an MCS rate number instead of an index */
	IEEE80211_TX_RC_MCS			= BIT(3),
	IEEE80211_TX_RC_GREEN_FIELD		= BIT(4),
	IEEE80211_TX_RC_40_MHZ_WIDTH		= BIT(5),
	IEEE80211_TX_RC_DUP_DATA		= BIT(6),
	IEEE80211_TX_RC_SHORT_GI		= BIT(7),
};


/* there are 40 bytes if you don't need the rateset to be kept */
#define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40

/* if you do need the rateset, then you have less space */
#define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24

/* maximum number of rate stages */
#define IEEE80211_TX_MAX_RATES	5

/**
 * struct ieee80211_tx_rate - rate selection/status
 *
 * @idx: rate index to attempt to send with
 * @flags: rate control flags (&enum mac80211_rate_control_flags)
 * @count: number of tries in this rate before going to the next rate
 *
 * A value of -1 for @idx indicates an invalid rate and, if used
 * in an array of retry rates, that no more rates should be tried.
 *
 * When used for transmit status reporting, the driver should
 * always report the rate along with the flags it used.
 *
 * &struct ieee80211_tx_info contains an array of these structs
 * in the control information, and it will be filled by the rate
 * control algorithm according to what should be sent. For example,
 * if this array contains, in the format { <idx>, <count> } the
 * information
 *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
 * then this means that the frame should be transmitted
 * up to twice at rate 3, up to twice at rate 2, and up to four
 * times at rate 1 if it doesn't get acknowledged. Say it gets
 * acknowledged by the peer after the fifth attempt, the status
 * information should then contain
 *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
 * since it was transmitted twice at rate 3, twice at rate 2
 * and once at rate 1 after which we received an acknowledgement.
 */
struct ieee80211_tx_rate {
	s8 idx;
	u8 count;
	u8 flags;
} __packed;

/**
 * struct ieee80211_tx_info - skb transmit information
 *
 * This structure is placed in skb->cb for three uses:
 *  (1) mac80211 TX control - mac80211 tells the driver what to do
 *  (2) driver internal use (if applicable)
 *  (3) TX status information - driver tells mac80211 what happened
 *
 * The TX control's sta pointer is only valid during the ->tx call,
 * it may be NULL.
 *
 * @flags: transmit info flags, defined above
 * @band: the band to transmit on (use for checking for races)
 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
 * @ack_frame_id: internal frame ID for TX status, used internally
 * @control: union for control data
 * @status: union for status data
 * @driver_data: array of driver_data pointers
 * @ampdu_ack_len: number of acked aggregated frames.
 * 	relevant only if IEEE80211_TX_STAT_AMPDU was set.
 * @ampdu_len: number of aggregated frames.
 * 	relevant only if IEEE80211_TX_STAT_AMPDU was set.
 * @ack_signal: signal strength of the ACK frame
 */
struct ieee80211_tx_info {
	/* common information */
	u32 flags;
	u8 band;

	u8 antenna_sel_tx;

	u16 ack_frame_id;

	union {
		struct {
			union {
				/* rate control */
				struct {
					struct ieee80211_tx_rate rates[
						IEEE80211_TX_MAX_RATES];
					s8 rts_cts_rate_idx;
				};
				/* only needed before rate control */
				unsigned long jiffies;
			};
			/* NB: vif can be NULL for injected frames */
			struct ieee80211_vif *vif;
			struct ieee80211_key_conf *hw_key;
			struct ieee80211_sta *sta;
		} control;
		struct {
			struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
			u8 ampdu_ack_len;
			int ack_signal;
			u8 ampdu_len;
			/* 15 bytes free */
		} status;
		struct {
			struct ieee80211_tx_rate driver_rates[
				IEEE80211_TX_MAX_RATES];
			void *rate_driver_data[
				IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
		};
		void *driver_data[
			IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
	};
};

/**
 * struct ieee80211_sched_scan_ies - scheduled scan IEs
 *
 * This structure is used to pass the appropriate IEs to be used in scheduled
 * scans for all bands.  It contains both the IEs passed from the userspace
 * and the ones generated by mac80211.
 *
 * @ie: array with the IEs for each supported band
 * @len: array with the total length of the IEs for each band
 */
struct ieee80211_sched_scan_ies {
	u8 *ie[IEEE80211_NUM_BANDS];
	size_t len[IEEE80211_NUM_BANDS];
};

static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
{
	return (struct ieee80211_tx_info *)skb->cb;
}

static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
{
	return (struct ieee80211_rx_status *)skb->cb;
}

/**
 * ieee80211_tx_info_clear_status - clear TX status
 *
 * @info: The &struct ieee80211_tx_info to be cleared.
 *
 * When the driver passes an skb back to mac80211, it must report
 * a number of things in TX status. This function clears everything
 * in the TX status but the rate control information (it does clear
 * the count since you need to fill that in anyway).
 *
 * NOTE: You can only use this function if you do NOT use
 *	 info->driver_data! Use info->rate_driver_data
 *	 instead if you need only the less space that allows.
 */
static inline void
ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
{
	int i;

	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
		     offsetof(struct ieee80211_tx_info, control.rates));
	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
		     offsetof(struct ieee80211_tx_info, driver_rates));
	BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
	/* clear the rate counts */
	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
		info->status.rates[i].count = 0;

	BUILD_BUG_ON(
	    offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
	memset(&info->status.ampdu_ack_len, 0,
	       sizeof(struct ieee80211_tx_info) -
	       offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
}


/**
 * enum mac80211_rx_flags - receive flags
 *
 * These flags are used with the @flag member of &struct ieee80211_rx_status.
 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
 *	Use together with %RX_FLAG_MMIC_STRIPPED.
 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
 *	verification has been done by the hardware.
 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
 *	If this flag is set, the stack cannot do any replay detection
 *	hence the driver or hardware will have to do that.
 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
 *	the frame.
 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
 *	the frame.
 * @RX_FLAG_MACTIME_MPDU: The timestamp passed in the RX status (@mactime
 *	field) is valid and contains the time the first symbol of the MPDU
 *	was received. This is useful in monitor mode and for proper IBSS
 *	merging.
 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
 * @RX_FLAG_SHORT_GI: Short guard interval was used
 */
enum mac80211_rx_flags {
	RX_FLAG_MMIC_ERROR	= 1<<0,
	RX_FLAG_DECRYPTED	= 1<<1,
	RX_FLAG_MMIC_STRIPPED	= 1<<3,
	RX_FLAG_IV_STRIPPED	= 1<<4,
	RX_FLAG_FAILED_FCS_CRC	= 1<<5,
	RX_FLAG_FAILED_PLCP_CRC = 1<<6,
	RX_FLAG_MACTIME_MPDU	= 1<<7,
	RX_FLAG_SHORTPRE	= 1<<8,
	RX_FLAG_HT		= 1<<9,
	RX_FLAG_40MHZ		= 1<<10,
	RX_FLAG_SHORT_GI	= 1<<11,
};

/**
 * struct ieee80211_rx_status - receive status
 *
 * The low-level driver should provide this information (the subset
 * supported by hardware) to the 802.11 code with each received
 * frame, in the skb's control buffer (cb).
 *
 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
 * 	(TSF) timer when the first data symbol (MPDU) arrived at the hardware.
 * @band: the active band when this frame was received
 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
 * @signal: signal strength when receiving this frame, either in dBm, in dB or
 *	unspecified depending on the hardware capabilities flags
 *	@IEEE80211_HW_SIGNAL_*
 * @antenna: antenna used
 * @rate_idx: index of data rate into band's supported rates or MCS index if
 *	HT rates are use (RX_FLAG_HT)
 * @flag: %RX_FLAG_*
 * @rx_flags: internal RX flags for mac80211
 */
struct ieee80211_rx_status {
	u64 mactime;
	enum ieee80211_band band;
	int freq;
	int signal;
	int antenna;
	int rate_idx;
	int flag;
	unsigned int rx_flags;
};

/**
 * enum ieee80211_conf_flags - configuration flags
 *
 * Flags to define PHY configuration options
 *
 * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this
 *	to determine for example whether to calculate timestamps for packets
 *	or not, do not use instead of filter flags!
 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only).
 *	This is the power save mode defined by IEEE 802.11-2007 section 11.2,
 *	meaning that the hardware still wakes up for beacons, is able to
 *	transmit frames and receive the possible acknowledgment frames.
 *	Not to be confused with hardware specific wakeup/sleep states,
 *	driver is responsible for that. See the section "Powersave support"
 *	for more.
 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
 *	the driver should be prepared to handle configuration requests but
 *	may turn the device off as much as possible. Typically, this flag will
 *	be set when an interface is set UP but not associated or scanning, but
 *	it can also be unset in that case when monitor interfaces are active.
 * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main
 *	operating channel.
 */
enum ieee80211_conf_flags {
	IEEE80211_CONF_MONITOR		= (1<<0),
	IEEE80211_CONF_PS		= (1<<1),
	IEEE80211_CONF_IDLE		= (1<<2),
	IEEE80211_CONF_OFFCHANNEL	= (1<<3),
};


/**
 * enum ieee80211_conf_changed - denotes which configuration changed
 *
 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
 * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed
 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
 * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed
 */
enum ieee80211_conf_changed {
	IEEE80211_CONF_CHANGE_SMPS		= BIT(1),
	IEEE80211_CONF_CHANGE_LISTEN_INTERVAL	= BIT(2),
	IEEE80211_CONF_CHANGE_MONITOR		= BIT(3),
	IEEE80211_CONF_CHANGE_PS		= BIT(4),
	IEEE80211_CONF_CHANGE_POWER		= BIT(5),
	IEEE80211_CONF_CHANGE_CHANNEL		= BIT(6),
	IEEE80211_CONF_CHANGE_RETRY_LIMITS	= BIT(7),
	IEEE80211_CONF_CHANGE_IDLE		= BIT(8),
};

/**
 * enum ieee80211_smps_mode - spatial multiplexing power save mode
 *
 * @IEEE80211_SMPS_AUTOMATIC: automatic
 * @IEEE80211_SMPS_OFF: off
 * @IEEE80211_SMPS_STATIC: static
 * @IEEE80211_SMPS_DYNAMIC: dynamic
 * @IEEE80211_SMPS_NUM_MODES: internal, don't use
 */
enum ieee80211_smps_mode {
	IEEE80211_SMPS_AUTOMATIC,
	IEEE80211_SMPS_OFF,
	IEEE80211_SMPS_STATIC,
	IEEE80211_SMPS_DYNAMIC,

	/* keep last */
	IEEE80211_SMPS_NUM_MODES,
};

/**
 * struct ieee80211_conf - configuration of the device
 *
 * This struct indicates how the driver shall configure the hardware.
 *
 * @flags: configuration flags defined above
 *
 * @listen_interval: listen interval in units of beacon interval
 * @max_sleep_period: the maximum number of beacon intervals to sleep for
 *	before checking the beacon for a TIM bit (managed mode only); this
 *	value will be only achievable between DTIM frames, the hardware
 *	needs to check for the multicast traffic bit in DTIM beacons.
 *	This variable is valid only when the CONF_PS flag is set.
 * @ps_dtim_period: The DTIM period of the AP we're connected to, for use
 *	in power saving. Power saving will not be enabled until a beacon
 *	has been received and the DTIM period is known.
 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
 *	powersave documentation below. This variable is valid only when
 *	the CONF_PS flag is set.
 *
 * @power_level: requested transmit power (in dBm)
 *
 * @channel: the channel to tune to
 * @channel_type: the channel (HT) type
 *
 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
 *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
 *    but actually means the number of transmissions not the number of retries
 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
 *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
 *    number of transmissions not the number of retries
 *
 * @smps_mode: spatial multiplexing powersave mode; note that
 *	%IEEE80211_SMPS_STATIC is used when the device is not
 *	configured for an HT channel
 */
struct ieee80211_conf {
	u32 flags;
	int power_level, dynamic_ps_timeout;
	int max_sleep_period;

	u16 listen_interval;
	u8 ps_dtim_period;

	u8 long_frame_max_tx_count, short_frame_max_tx_count;

	struct ieee80211_channel *channel;
	enum nl80211_channel_type channel_type;
	enum ieee80211_smps_mode smps_mode;
};

/**
 * struct ieee80211_channel_switch - holds the channel switch data
 *
 * The information provided in this structure is required for channel switch
 * operation.
 *
 * @timestamp: value in microseconds of the 64-bit Time Synchronization
 *	Function (TSF) timer when the frame containing the channel switch
 *	announcement was received. This is simply the rx.mactime parameter
 *	the driver passed into mac80211.
 * @block_tx: Indicates whether transmission must be blocked before the
 *	scheduled channel switch, as indicated by the AP.
 * @channel: the new channel to switch to
 * @count: the number of TBTT's until the channel switch event
 */
struct ieee80211_channel_switch {
	u64 timestamp;
	bool block_tx;
	struct ieee80211_channel *channel;
	u8 count;
};

/**
 * struct ieee80211_vif - per-interface data
 *
 * Data in this structure is continually present for driver
 * use during the life of a virtual interface.
 *
 * @type: type of this virtual interface
 * @bss_conf: BSS configuration for this interface, either our own
 *	or the BSS we're associated to
 * @addr: address of this interface
 * @p2p: indicates whether this AP or STA interface is a p2p
 *	interface, i.e. a GO or p2p-sta respectively
 * @drv_priv: data area for driver use, will always be aligned to
 *	sizeof(void *).
 */
struct ieee80211_vif {
	enum nl80211_iftype type;
	struct ieee80211_bss_conf bss_conf;
	u8 addr[ETH_ALEN];
	bool p2p;
	/* must be last */
	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
};

static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
{
#ifdef CONFIG_MAC80211_MESH
	return vif->type == NL80211_IFTYPE_MESH_POINT;
#endif
	return false;
}

/**
 * enum ieee80211_key_flags - key flags
 *
 * These flags are used for communication about keys between the driver
 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
 *
 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
 *	that the STA this key will be used with could be using QoS.
 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
 *	driver to indicate that it requires IV generation for this
 *	particular key.
 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
 *	the driver for a TKIP key if it requires Michael MIC
 *	generation in software.
 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
 *	that the key is pairwise rather then a shared key.
 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
 *	CCMP key if it requires CCMP encryption of management frames (MFP) to
 *	be done in software.
 * @IEEE80211_KEY_FLAG_PUT_IV_SPACE: This flag should be set by the driver
 *	for a CCMP key if space should be prepared for the IV, but the IV
 *	itself should not be generated. Do not set together with
 *	@IEEE80211_KEY_FLAG_GENERATE_IV on the same key.
 */
enum ieee80211_key_flags {
	IEEE80211_KEY_FLAG_WMM_STA	= 1<<0,
	IEEE80211_KEY_FLAG_GENERATE_IV	= 1<<1,
	IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
	IEEE80211_KEY_FLAG_PAIRWISE	= 1<<3,
	IEEE80211_KEY_FLAG_SW_MGMT	= 1<<4,
	IEEE80211_KEY_FLAG_PUT_IV_SPACE = 1<<5,
};

/**
 * struct ieee80211_key_conf - key information
 *
 * This key information is given by mac80211 to the driver by
 * the set_key() callback in &struct ieee80211_ops.
 *
 * @hw_key_idx: To be set by the driver, this is the key index the driver
 *	wants to be given when a frame is transmitted and needs to be
 *	encrypted in hardware.
 * @cipher: The key's cipher suite selector.
 * @flags: key flags, see &enum ieee80211_key_flags.
 * @keyidx: the key index (0-3)
 * @keylen: key material length
 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
 * 	data block:
 * 	- Temporal Encryption Key (128 bits)
 * 	- Temporal Authenticator Tx MIC Key (64 bits)
 * 	- Temporal Authenticator Rx MIC Key (64 bits)
 * @icv_len: The ICV length for this key type
 * @iv_len: The IV length for this key type
 */
struct ieee80211_key_conf {
	u32 cipher;
	u8 icv_len;
	u8 iv_len;
	u8 hw_key_idx;
	u8 flags;
	s8 keyidx;
	u8 keylen;
	u8 key[0];
};

/**
 * enum set_key_cmd - key command
 *
 * Used with the set_key() callback in &struct ieee80211_ops, this
 * indicates whether a key is being removed or added.
 *
 * @SET_KEY: a key is set
 * @DISABLE_KEY: a key must be disabled
 */
enum set_key_cmd {
	SET_KEY, DISABLE_KEY,
};

/**
 * struct ieee80211_sta - station table entry
 *
 * A station table entry represents a station we are possibly
 * communicating with. Since stations are RCU-managed in
 * mac80211, any ieee80211_sta pointer you get access to must
 * either be protected by rcu_read_lock() explicitly or implicitly,
 * or you must take good care to not use such a pointer after a
 * call to your sta_remove callback that removed it.
 *
 * @addr: MAC address
 * @aid: AID we assigned to the station if we're an AP
 * @supp_rates: Bitmap of supported rates (per band)
 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
 * @wme: indicates whether the STA supports WME. Only valid during AP-mode.
 * @drv_priv: data area for driver use, will always be aligned to
 *	sizeof(void *), size is determined in hw information.
 * @uapsd_queues: bitmap of queues configured for uapsd. Only valid
 *	if wme is supported.
 * @max_sp: max Service Period. Only valid if wme is supported.
 */
struct ieee80211_sta {
	u32 supp_rates[IEEE80211_NUM_BANDS];
	u8 addr[ETH_ALEN];
	u16 aid;
	struct ieee80211_sta_ht_cap ht_cap;
	bool wme;
	u8 uapsd_queues;
	u8 max_sp;

	/* must be last */
	u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
};

/**
 * enum sta_notify_cmd - sta notify command
 *
 * Used with the sta_notify() callback in &struct ieee80211_ops, this
 * indicates if an associated station made a power state transition.
 *
 * @STA_NOTIFY_SLEEP: a station is now sleeping
 * @STA_NOTIFY_AWAKE: a sleeping station woke up
 */
enum sta_notify_cmd {
	STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
};

/**
 * enum ieee80211_hw_flags - hardware flags
 *
 * These flags are used to indicate hardware capabilities to
 * the stack. Generally, flags here should have their meaning
 * done in a way that the simplest hardware doesn't need setting
 * any particular flags. There are some exceptions to this rule,
 * however, so you are advised to review these flags carefully.
 *
 * @IEEE80211_HW_HAS_RATE_CONTROL:
 *	The hardware or firmware includes rate control, and cannot be
 *	controlled by the stack. As such, no rate control algorithm
 *	should be instantiated, and the TX rate reported to userspace
 *	will be taken from the TX status instead of the rate control
 *	algorithm.
 *	Note that this requires that the driver implement a number of
 *	callbacks so it has the correct information, it needs to have
 *	the @set_rts_threshold callback and must look at the BSS config
 *	@use_cts_prot for G/N protection, @use_short_slot for slot
 *	timing in 2.4 GHz and @use_short_preamble for preambles for
 *	CCK frames.
 *
 * @IEEE80211_HW_RX_INCLUDES_FCS:
 *	Indicates that received frames passed to the stack include
 *	the FCS at the end.
 *
 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
 *	Some wireless LAN chipsets buffer broadcast/multicast frames
 *	for power saving stations in the hardware/firmware and others
 *	rely on the host system for such buffering. This option is used
 *	to configure the IEEE 802.11 upper layer to buffer broadcast and
 *	multicast frames when there are power saving stations so that
 *	the driver can fetch them with ieee80211_get_buffered_bc().
 *
 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
 *	Hardware is not capable of short slot operation on the 2.4 GHz band.
 *
 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
 *	Hardware is not capable of receiving frames with short preamble on
 *	the 2.4 GHz band.
 *
 * @IEEE80211_HW_SIGNAL_UNSPEC:
 *	Hardware can provide signal values but we don't know its units. We
 *	expect values between 0 and @max_signal.
 *	If possible please provide dB or dBm instead.
 *
 * @IEEE80211_HW_SIGNAL_DBM:
 *	Hardware gives signal values in dBm, decibel difference from
 *	one milliwatt. This is the preferred method since it is standardized
 *	between different devices. @max_signal does not need to be set.
 *
 * @IEEE80211_HW_SPECTRUM_MGMT:
 * 	Hardware supports spectrum management defined in 802.11h
 * 	Measurement, Channel Switch, Quieting, TPC
 *
 * @IEEE80211_HW_AMPDU_AGGREGATION:
 *	Hardware supports 11n A-MPDU aggregation.
 *
 * @IEEE80211_HW_SUPPORTS_PS:
 *	Hardware has power save support (i.e. can go to sleep).
 *
 * @IEEE80211_HW_PS_NULLFUNC_STACK:
 *	Hardware requires nullfunc frame handling in stack, implies
 *	stack support for dynamic PS.
 *
 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
 *	Hardware has support for dynamic PS.
 *
 * @IEEE80211_HW_MFP_CAPABLE:
 *	Hardware supports management frame protection (MFP, IEEE 802.11w).
 *
 * @IEEE80211_HW_BEACON_FILTER:
 *	Hardware supports dropping of irrelevant beacon frames to
 *	avoid waking up cpu.
 *
 * @IEEE80211_HW_SUPPORTS_STATIC_SMPS:
 *	Hardware supports static spatial multiplexing powersave,
 *	ie. can turn off all but one chain even on HT connections
 *	that should be using more chains.
 *
 * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS:
 *	Hardware supports dynamic spatial multiplexing powersave,
 *	ie. can turn off all but one chain and then wake the rest
 *	up as required after, for example, rts/cts handshake.
 *
 * @IEEE80211_HW_SUPPORTS_UAPSD:
 *	Hardware supports Unscheduled Automatic Power Save Delivery
 *	(U-APSD) in managed mode. The mode is configured with
 *	conf_tx() operation.
 *
 * @IEEE80211_HW_REPORTS_TX_ACK_STATUS:
 *	Hardware can provide ack status reports of Tx frames to
 *	the stack.
 *
 * @IEEE80211_HW_CONNECTION_MONITOR:
 *      The hardware performs its own connection monitoring, including
 *      periodic keep-alives to the AP and probing the AP on beacon loss.
 *      When this flag is set, signaling beacon-loss will cause an immediate
 *      change to disassociated state.
 *
 * @IEEE80211_HW_SUPPORTS_CQM_RSSI:
 *	Hardware can do connection quality monitoring - i.e. it can monitor
 *	connection quality related parameters, such as the RSSI level and
 *	provide notifications if configured trigger levels are reached.
 *
 * @IEEE80211_HW_NEED_DTIM_PERIOD:
 *	This device needs to know the DTIM period for the BSS before
 *	associating.
 *
 * @IEEE80211_HW_SUPPORTS_PER_STA_GTK: The device's crypto engine supports
 *	per-station GTKs as used by IBSS RSN or during fast transition. If
 *	the device doesn't support per-station GTKs, but can be asked not
 *	to decrypt group addressed frames, then IBSS RSN support is still
 *	possible but software crypto will be used. Advertise the wiphy flag
 *	only in that case.
 *
 * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
 *	autonomously manages the PS status of connected stations. When
 *	this flag is set mac80211 will not trigger PS mode for connected
 *	stations based on the PM bit of incoming frames.
 *	Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
 *	the PS mode of connected stations.
 *
 * @IEEE80211_HW_TX_AMPDU_SETUP_IN_HW: The device handles TX A-MPDU session
 *	setup strictly in HW. mac80211 should not attempt to do this in
 *	software.
 */
enum ieee80211_hw_flags {
	IEEE80211_HW_HAS_RATE_CONTROL			= 1<<0,
	IEEE80211_HW_RX_INCLUDES_FCS			= 1<<1,
	IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING	= 1<<2,
	IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE		= 1<<3,
	IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE	= 1<<4,
	IEEE80211_HW_SIGNAL_UNSPEC			= 1<<5,
	IEEE80211_HW_SIGNAL_DBM				= 1<<6,
	IEEE80211_HW_NEED_DTIM_PERIOD			= 1<<7,
	IEEE80211_HW_SPECTRUM_MGMT			= 1<<8,
	IEEE80211_HW_AMPDU_AGGREGATION			= 1<<9,
	IEEE80211_HW_SUPPORTS_PS			= 1<<10,
	IEEE80211_HW_PS_NULLFUNC_STACK			= 1<<11,
	IEEE80211_HW_SUPPORTS_DYNAMIC_PS		= 1<<12,
	IEEE80211_HW_MFP_CAPABLE			= 1<<13,
	IEEE80211_HW_BEACON_FILTER			= 1<<14,
	IEEE80211_HW_SUPPORTS_STATIC_SMPS		= 1<<15,
	IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS		= 1<<16,
	IEEE80211_HW_SUPPORTS_UAPSD			= 1<<17,
	IEEE80211_HW_REPORTS_TX_ACK_STATUS		= 1<<18,
	IEEE80211_HW_CONNECTION_MONITOR			= 1<<19,
	IEEE80211_HW_SUPPORTS_CQM_RSSI			= 1<<20,
	IEEE80211_HW_SUPPORTS_PER_STA_GTK		= 1<<21,
	IEEE80211_HW_AP_LINK_PS				= 1<<22,
	IEEE80211_HW_TX_AMPDU_SETUP_IN_HW		= 1<<23,
};

/**
 * struct ieee80211_hw - hardware information and state
 *
 * This structure contains the configuration and hardware
 * information for an 802.11 PHY.
 *
 * @wiphy: This points to the &struct wiphy allocated for this
 *	802.11 PHY. You must fill in the @perm_addr and @dev
 *	members of this structure using SET_IEEE80211_DEV()
 *	and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
 *	bands (with channels, bitrates) are registered here.
 *
 * @conf: &struct ieee80211_conf, device configuration, don't use.
 *
 * @priv: pointer to private area that was allocated for driver use
 *	along with this structure.
 *
 * @flags: hardware flags, see &enum ieee80211_hw_flags.
 *
 * @extra_tx_headroom: headroom to reserve in each transmit skb
 *	for use by the driver (e.g. for transmit headers.)
 *
 * @channel_change_time: time (in microseconds) it takes to change channels.
 *
 * @max_signal: Maximum value for signal (rssi) in RX information, used
 *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
 *
 * @max_listen_interval: max listen interval in units of beacon interval
 *     that HW supports
 *
 * @queues: number of available hardware transmit queues for
 *	data packets. WMM/QoS requires at least four, these
 *	queues need to have configurable access parameters.
 *
 * @rate_control_algorithm: rate control algorithm for this hardware.
 *	If unset (NULL), the default algorithm will be used. Must be
 *	set before calling ieee80211_register_hw().
 *
 * @vif_data_size: size (in bytes) of the drv_priv data area
 *	within &struct ieee80211_vif.
 * @sta_data_size: size (in bytes) of the drv_priv data area
 *	within &struct ieee80211_sta.
 *
 * @max_rates: maximum number of alternate rate retry stages the hw
 *	can handle.
 * @max_report_rates: maximum number of alternate rate retry stages
 *	the hw can report back.
 * @max_rate_tries: maximum number of tries for each stage
 *
 * @napi_weight: weight used for NAPI polling.  You must specify an
 *	appropriate value here if a napi_poll operation is provided
 *	by your driver.
 *
 * @max_rx_aggregation_subframes: maximum buffer size (number of
 *	sub-frames) to be used for A-MPDU block ack receiver
 *	aggregation.
 *	This is only relevant if the device has restrictions on the
 *	number of subframes, if it relies on mac80211 to do reordering
 *	it shouldn't be set.
 *
 * @max_tx_aggregation_subframes: maximum number of subframes in an
 *	aggregate an HT driver will transmit, used by the peer as a
 *	hint to size its reorder buffer.
 */
struct ieee80211_hw {
	struct ieee80211_conf conf;
	struct wiphy *wiphy;
	const char *rate_control_algorithm;
	void *priv;
	u32 flags;
	unsigned int extra_tx_headroom;
	int channel_change_time;
	int vif_data_size;
	int sta_data_size;
	int napi_weight;
	u16 queues;
	u16 max_listen_interval;
	s8 max_signal;
	u8 max_rates;
	u8 max_report_rates;
	u8 max_rate_tries;
	u8 max_rx_aggregation_subframes;
	u8 max_tx_aggregation_subframes;
};

/**
 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
 *
 * @wiphy: the &struct wiphy which we want to query
 *
 * mac80211 drivers can use this to get to their respective
 * &struct ieee80211_hw. Drivers wishing to get to their own private
 * structure can then access it via hw->priv. Note that mac802111 drivers should
 * not use wiphy_priv() to try to get their private driver structure as this
 * is already used internally by mac80211.
 */
struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);

/**
 * SET_IEEE80211_DEV - set device for 802.11 hardware
 *
 * @hw: the &struct ieee80211_hw to set the device for
 * @dev: the &struct device of this 802.11 device
 */
static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
{
	set_wiphy_dev(hw->wiphy, dev);
}

/**
 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
 *
 * @hw: the &struct ieee80211_hw to set the MAC address for
 * @addr: the address to set
 */
static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
{
	memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
}

static inline struct ieee80211_rate *
ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
		      const struct ieee80211_tx_info *c)
{
	if (WARN_ON(c->control.rates[0].idx < 0))
		return NULL;
	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
}

static inline struct ieee80211_rate *
ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
			   const struct ieee80211_tx_info *c)
{
	if (c->control.rts_cts_rate_idx < 0)
		return NULL;
	return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
}

static inline struct ieee80211_rate *
ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
			     const struct ieee80211_tx_info *c, int idx)
{
	if (c->control.rates[idx + 1].idx < 0)
		return NULL;
	return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
}

/**
 * ieee80211_free_txskb - free TX skb
 * @hw: the hardware
 * @skb: the skb
 *
 * Free a transmit skb. Use this funtion when some failure
 * to transmit happened and thus status cannot be reported.
 */
void ieee80211_free_txskb(struct ieee80211_hw *hw, struct sk_buff *skb);

/**
 * DOC: Hardware crypto acceleration
 *
 * mac80211 is capable of taking advantage of many hardware
 * acceleration designs for encryption and decryption operations.
 *
 * The set_key() callback in the &struct ieee80211_ops for a given
 * device is called to enable hardware acceleration of encryption and
 * decryption. The callback takes a @sta parameter that will be NULL
 * for default keys or keys used for transmission only, or point to
 * the station information for the peer for individual keys.
 * Multiple transmission keys with the same key index may be used when
 * VLANs are configured for an access point.
 *
 * When transmitting, the TX control data will use the @hw_key_idx
 * selected by the driver by modifying the &struct ieee80211_key_conf
 * pointed to by the @key parameter to the set_key() function.
 *
 * The set_key() call for the %SET_KEY command should return 0 if
 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
 * added; if you return 0 then hw_key_idx must be assigned to the
 * hardware key index, you are free to use the full u8 range.
 *
 * When the cmd is %DISABLE_KEY then it must succeed.
 *
 * Note that it is permissible to not decrypt a frame even if a key
 * for it has been uploaded to hardware, the stack will not make any
 * decision based on whether a key has been uploaded or not but rather
 * based on the receive flags.
 *
 * The &struct ieee80211_key_conf structure pointed to by the @key
 * parameter is guaranteed to be valid until another call to set_key()
 * removes it, but it can only be used as a cookie to differentiate
 * keys.
 *
 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
 * handler.
 * The update_tkip_key() call updates the driver with the new phase 1 key.
 * This happens every time the iv16 wraps around (every 65536 packets). The
 * set_key() call will happen only once for each key (unless the AP did
 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
 * provided by update_tkip_key only. The trigger that makes mac80211 call this
 * handler is software decryption with wrap around of iv16.
 */

/**
 * DOC: Powersave support
 *
 * mac80211 has support for various powersave implementations.
 *
 * First, it can support hardware that handles all powersaving by itself,
 * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware
 * flag. In that case, it will be told about the desired powersave mode
 * with the %IEEE80211_CONF_PS flag depending on the association status.
 * The hardware must take care of sending nullfunc frames when necessary,
 * i.e. when entering and leaving powersave mode. The hardware is required
 * to look at the AID in beacons and signal to the AP that it woke up when
 * it finds traffic directed to it.
 *
 * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in
 * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused
 * with hardware wakeup and sleep states. Driver is responsible for waking
 * up the hardware before issuing commands to the hardware and putting it
 * back to sleep at appropriate times.
 *
 * When PS is enabled, hardware needs to wakeup for beacons and receive the
 * buffered multicast/broadcast frames after the beacon. Also it must be
 * possible to send frames and receive the acknowledment frame.
 *
 * Other hardware designs cannot send nullfunc frames by themselves and also
 * need software support for parsing the TIM bitmap. This is also supported
 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
 * required to pass up beacons. The hardware is still required to handle
 * waking up for multicast traffic; if it cannot the driver must handle that
 * as best as it can, mac80211 is too slow to do that.
 *
 * Dynamic powersave is an extension to normal powersave in which the
 * hardware stays awake for a user-specified period of time after sending a
 * frame so that reply frames need not be buffered and therefore delayed to
 * the next wakeup. It's compromise of getting good enough latency when
 * there's data traffic and still saving significantly power in idle
 * periods.
 *
 * Dynamic powersave is simply supported by mac80211 enabling and disabling
 * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS
 * flag and mac80211 will handle everything automatically. Additionally,
 * hardware having support for the dynamic PS feature may set the
 * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support
 * dynamic PS mode itself. The driver needs to look at the
 * @dynamic_ps_timeout hardware configuration value and use it that value
 * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable
 * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS
 * enabled whenever user has enabled powersave.
 *
 * Some hardware need to toggle a single shared antenna between WLAN and
 * Bluetooth to facilitate co-existence. These types of hardware set
 * limitations on the use of host controlled dynamic powersave whenever there
 * is simultaneous WLAN and Bluetooth traffic. For these types of hardware, the
 * driver may request temporarily going into full power save, in order to
 * enable toggling the antenna between BT and WLAN. If the driver requests
 * disabling dynamic powersave, the @dynamic_ps_timeout value will be
 * temporarily set to zero until the driver re-enables dynamic powersave.
 *
 * Driver informs U-APSD client support by enabling
 * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the
 * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS
 * Nullfunc frames and stay awake until the service period has ended. To
 * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames
 * from that AC are transmitted with powersave enabled.
 *
 * Note: U-APSD client mode is not yet supported with
 * %IEEE80211_HW_PS_NULLFUNC_STACK.
 */

/**
 * DOC: Beacon filter support
 *
 * Some hardware have beacon filter support to reduce host cpu wakeups
 * which will reduce system power consumption. It usually works so that
 * the firmware creates a checksum of the beacon but omits all constantly
 * changing elements (TSF, TIM etc). Whenever the checksum changes the
 * beacon is forwarded to the host, otherwise it will be just dropped. That
 * way the host will only receive beacons where some relevant information
 * (for example ERP protection or WMM settings) have changed.
 *
 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
 * hardware capability. The driver needs to enable beacon filter support
 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
 * power save is enabled, the stack will not check for beacon loss and the
 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
 *
 * The time (or number of beacons missed) until the firmware notifies the
 * driver of a beacon loss event (which in turn causes the driver to call
 * ieee80211_beacon_loss()) should be configurable and will be controlled
 * by mac80211 and the roaming algorithm in the future.
 *
 * Since there may be constantly changing information elements that nothing
 * in the software stack cares about, we will, in the future, have mac80211
 * tell the driver which information elements are interesting in the sense
 * that we want to see changes in them. This will include
 *  - a list of information element IDs
 *  - a list of OUIs for the vendor information element
 *
 * Ideally, the hardware would filter out any beacons without changes in the
 * requested elements, but if it cannot support that it may, at the expense
 * of some efficiency, filter out only a subset. For example, if the device
 * doesn't support checking for OUIs it should pass up all changes in all
 * vendor information elements.
 *
 * Note that change, for the sake of simplification, also includes information
 * elements appearing or disappearing from the beacon.
 *
 * Some hardware supports an "ignore list" instead, just make sure nothing
 * that was requested is on the ignore list, and include commonly changing
 * information element IDs in the ignore list, for example 11 (BSS load) and
 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
 * it could also include some currently unused IDs.
 *
 *
 * In addition to these capabilities, hardware should support notifying the
 * host of changes in the beacon RSSI. This is relevant to implement roaming
 * when no traffic is flowing (when traffic is flowing we see the RSSI of
 * the received data packets). This can consist in notifying the host when
 * the RSSI changes significantly or when it drops below or rises above
 * configurable thresholds. In the future these thresholds will also be
 * configured by mac80211 (which gets them from userspace) to implement
 * them as the roaming algorithm requires.
 *
 * If the hardware cannot implement this, the driver should ask it to
 * periodically pass beacon frames to the host so that software can do the
 * signal strength threshold checking.
 */

/**
 * DOC: Spatial multiplexing power save
 *
 * SMPS (Spatial multiplexing power save) is a mechanism to conserve
 * power in an 802.11n implementation. For details on the mechanism
 * and rationale, please refer to 802.11 (as amended by 802.11n-2009)
 * "11.2.3 SM power save".
 *
 * The mac80211 implementation is capable of sending action frames
 * to update the AP about the station's SMPS mode, and will instruct
 * the driver to enter the specific mode. It will also announce the
 * requested SMPS mode during the association handshake. Hardware
 * support for this feature is required, and can be indicated by
 * hardware flags.
 *
 * The default mode will be "automatic", which nl80211/cfg80211
 * defines to be dynamic SMPS in (regular) powersave, and SMPS
 * turned off otherwise.
 *
 * To support this feature, the driver must set the appropriate
 * hardware support flags, and handle the SMPS flag to the config()
 * operation. It will then with this mechanism be instructed to
 * enter the requested SMPS mode while associated to an HT AP.
 */

/**
 * DOC: Frame filtering
 *
 * mac80211 requires to see many management frames for proper
 * operation, and users may want to see many more frames when
 * in monitor mode. However, for best CPU usage and power consumption,
 * having as few frames as possible percolate through the stack is
 * desirable. Hence, the hardware should filter as much as possible.
 *
 * To achieve this, mac80211 uses filter flags (see below) to tell
 * the driver's configure_filter() function which frames should be
 * passed to mac80211 and which should be filtered out.
 *
 * Before configure_filter() is invoked, the prepare_multicast()
 * callback is invoked with the parameters @mc_count and @mc_list
 * for the combined multicast address list of all virtual interfaces.
 * It's use is optional, and it returns a u64 that is passed to
 * configure_filter(). Additionally, configure_filter() has the
 * arguments @changed_flags telling which flags were changed and
 * @total_flags with the new flag states.
 *
 * If your device has no multicast address filters your driver will
 * need to check both the %FIF_ALLMULTI flag and the @mc_count
 * parameter to see whether multicast frames should be accepted
 * or dropped.
 *
 * All unsupported flags in @total_flags must be cleared.
 * Hardware does not support a flag if it is incapable of _passing_
 * the frame to the stack. Otherwise the driver must ignore
 * the flag, but not clear it.
 * You must _only_ clear the flag (announce no support for the
 * flag to mac80211) if you are not able to pass the packet type
 * to the stack (so the hardware always filters it).
 * So for example, you should clear @FIF_CONTROL, if your hardware
 * always filters control frames. If your hardware always passes
 * control frames to the kernel and is incapable of filtering them,
 * you do _not_ clear the @FIF_CONTROL flag.
 * This rule applies to all other FIF flags as well.
 */

/**
 * DOC: AP support for powersaving clients
 *
 * In order to implement AP and P2P GO modes, mac80211 has support for
 * client powersaving, both "legacy" PS (PS-Poll/null data) and uAPSD.
 * There currently is no support for sAPSD.
 *
 * There is one assumption that mac80211 makes, namely that a client
 * will not poll with PS-Poll and trigger with uAPSD at the same time.
 * Both are supported, and both can be used by the same client, but
 * they can't be used concurrently by the same client. This simplifies
 * the driver code.
 *
 * The first thing to keep in mind is that there is a flag for complete
 * driver implementation: %IEEE80211_HW_AP_LINK_PS. If this flag is set,
 * mac80211 expects the driver to handle most of the state machine for
 * powersaving clients and will ignore the PM bit in incoming frames.
 * Drivers then use ieee80211_sta_ps_transition() to inform mac80211 of
 * stations' powersave transitions. In this mode, mac80211 also doesn't
 * handle PS-Poll/uAPSD.
 *
 * In the mode without %IEEE80211_HW_AP_LINK_PS, mac80211 will check the
 * PM bit in incoming frames for client powersave transitions. When a
 * station goes to sleep, we will stop transmitting to it. There is,
 * however, a race condition: a station might go to sleep while there is
 * data buffered on hardware queues. If the device has support for this
 * it will reject frames, and the driver should give the frames back to
 * mac80211 with the %IEEE80211_TX_STAT_TX_FILTERED flag set which will
 * cause mac80211 to retry the frame when the station wakes up. The
 * driver is also notified of powersave transitions by calling its
 * @sta_notify callback.
 *
 * When the station is asleep, it has three choices: it can wake up,
 * it can PS-Poll, or it can possibly start a uAPSD service period.
 * Waking up is implemented by simply transmitting all buffered (and
 * filtered) frames to the station. This is the easiest case. When
 * the station sends a PS-Poll or a uAPSD trigger frame, mac80211
 * will inform the driver of this with the @allow_buffered_frames
 * callback; this callback is optional. mac80211 will then transmit
 * the frames as usual and set the %IEEE80211_TX_CTL_POLL_RESPONSE
 * on each frame. The last frame in the service period (or the only
 * response to a PS-Poll) also has %IEEE80211_TX_STATUS_EOSP set to
 * indicate that it ends the service period; as this frame must have
 * TX status report it also sets %IEEE80211_TX_CTL_REQ_TX_STATUS.
 * When TX status is reported for this frame, the service period is
 * marked has having ended and a new one can be started by the peer.
 *
 * Another race condition can happen on some devices like iwlwifi
 * when there are frames queued for the station and it wakes up
 * or polls; the frames that are already queued could end up being
 * transmitted first instead, causing reordering and/or wrong
 * processing of the EOSP. The cause is that allowing frames to be
 * transmitted to a certain station is out-of-band communication to
 * the device. To allow this problem to be solved, the driver can
 * call ieee80211_sta_block_awake() if frames are buffered when it
 * is notified that the station went to sleep. When all these frames
 * have been filtered (see above), it must call the function again
 * to indicate that the station is no longer blocked.
 *
 * If the driver buffers frames in the driver for aggregation in any
 * way, it must use the ieee80211_sta_set_buffered() call when it is
 * notified of the station going to sleep to inform mac80211 of any
 * TIDs that have frames buffered. Note that when a station wakes up
 * this information is reset (hence the requirement to call it when
 * informed of the station going to sleep). Then, when a service
 * period starts for any reason, @release_buffered_frames is called
 * with the number of frames to be released and which TIDs they are
 * to come from. In this case, the driver is responsible for setting
 * the EOSP (for uAPSD) and MORE_DATA bits in the released frames,
 * to help the @more_data paramter is passed to tell the driver if
 * there is more data on other TIDs -- the TIDs to release frames
 * from are ignored since mac80211 doesn't know how many frames the
 * buffers for those TIDs contain.
 *
 * If the driver also implement GO mode, where absence periods may
 * shorten service periods (or abort PS-Poll responses), it must
 * filter those response frames except in the case of frames that
 * are buffered in the driver -- those must remain buffered to avoid
 * reordering. Because it is possible that no frames are released
 * in this case, the driver must call ieee80211_sta_eosp_irqsafe()
 * to indicate to mac80211 that the service period ended anyway.
 *
 * Finally, if frames from multiple TIDs are released from mac80211
 * but the driver might reorder them, it must clear & set the flags
 * appropriately (only the last frame may have %IEEE80211_TX_STATUS_EOSP)
 * and also take care of the EOSP and MORE_DATA bits in the frame.
 * The driver may also use ieee80211_sta_eosp_irqsafe() in this case.
 */

/**
 * enum ieee80211_filter_flags - hardware filter flags
 *
 * These flags determine what the filter in hardware should be
 * programmed to let through and what should not be passed to the
 * stack. It is always safe to pass more frames than requested,
 * but this has negative impact on power consumption.
 *
 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
 *	think of the BSS as your network segment and then this corresponds
 *	to the regular ethernet device promiscuous mode.
 *
 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
 *	by the user or if the hardware is not capable of filtering by
 *	multicast address.
 *
 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
 *	%RX_FLAG_FAILED_FCS_CRC for them)
 *
 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
 *	the %RX_FLAG_FAILED_PLCP_CRC for them
 *
 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
 *	to the hardware that it should not filter beacons or probe responses
 *	by BSSID. Filtering them can greatly reduce the amount of processing
 *	mac80211 needs to do and the amount of CPU wakeups, so you should
 *	honour this flag if possible.
 *
 * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
 * 	is not set then only those addressed to this station.
 *
 * @FIF_OTHER_BSS: pass frames destined to other BSSes
 *
 * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS is not set then only
 * 	those addressed to this station.
 *
 * @FIF_PROBE_REQ: pass probe request frames
 */
enum ieee80211_filter_flags {
	FIF_PROMISC_IN_BSS	= 1<<0,
	FIF_ALLMULTI		= 1<<1,
	FIF_FCSFAIL		= 1<<2,
	FIF_PLCPFAIL		= 1<<3,
	FIF_BCN_PRBRESP_PROMISC	= 1<<4,
	FIF_CONTROL		= 1<<5,
	FIF_OTHER_BSS		= 1<<6,
	FIF_PSPOLL		= 1<<7,
	FIF_PROBE_REQ		= 1<<8,
};

/**
 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
 *
 * These flags are used with the ampdu_action() callback in
 * &struct ieee80211_ops to indicate which action is needed.
 *
 * Note that drivers MUST be able to deal with a TX aggregation
 * session being stopped even before they OK'ed starting it by
 * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer
 * might receive the addBA frame and send a delBA right away!
 *
 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
 */
enum ieee80211_ampdu_mlme_action {
	IEEE80211_AMPDU_RX_START,
	IEEE80211_AMPDU_RX_STOP,
	IEEE80211_AMPDU_TX_START,
	IEEE80211_AMPDU_TX_STOP,
	IEEE80211_AMPDU_TX_OPERATIONAL,
};

/**
 * enum ieee80211_tx_sync_type - TX sync type
 * @IEEE80211_TX_SYNC_AUTH: sync TX for authentication
 *	(and possibly also before direct probe)
 * @IEEE80211_TX_SYNC_ASSOC: sync TX for association
 * @IEEE80211_TX_SYNC_ACTION: sync TX for action frame
 *	(not implemented yet)
 */
enum ieee80211_tx_sync_type {
	IEEE80211_TX_SYNC_AUTH,
	IEEE80211_TX_SYNC_ASSOC,
	IEEE80211_TX_SYNC_ACTION,
};

/**
 * enum ieee80211_frame_release_type - frame release reason
 * @IEEE80211_FRAME_RELEASE_PSPOLL: frame released for PS-Poll
 * @IEEE80211_FRAME_RELEASE_UAPSD: frame(s) released due to
 *	frame received on trigger-enabled AC
 */
enum ieee80211_frame_release_type {
	IEEE80211_FRAME_RELEASE_PSPOLL,
	IEEE80211_FRAME_RELEASE_UAPSD,
};

/**
 * struct ieee80211_ops - callbacks from mac80211 to the driver
 *
 * This structure contains various callbacks that the driver may
 * handle or, in some cases, must handle, for example to configure
 * the hardware to a new channel or to transmit a frame.
 *
 * @tx: Handler that 802.11 module calls for each transmitted frame.
 *	skb contains the buffer starting from the IEEE 802.11 header.
 *	The low-level driver should send the frame out based on
 *	configuration in the TX control data. This handler should,
 *	preferably, never fail and stop queues appropriately.
 *	This must be implemented if @tx_frags is not.
 *	Must be atomic.
 *
 * @tx_frags: Called to transmit multiple fragments of a single MSDU.
 *	This handler must consume all fragments, sending out some of
 *	them only is useless and it can't ask for some of them to be
 *	queued again. If the frame is not fragmented the queue has a
 *	single SKB only. To avoid issues with the networking stack
 *	when TX status is reported the frames should be removed from
 *	the skb queue.
 *	If this is used, the tx_info @vif and @sta pointers will be
 *	invalid -- you must not use them in that case.
 *	This must be implemented if @tx isn't.
 *	Must be atomic.
 *
 * @start: Called before the first netdevice attached to the hardware
 *	is enabled. This should turn on the hardware and must turn on
 *	frame reception (for possibly enabled monitor interfaces.)
 *	Returns negative error codes, these may be seen in userspace,
 *	or zero.
 *	When the device is started it should not have a MAC address
 *	to avoid acknowledging frames before a non-monitor device
 *	is added.
 *	Must be implemented and can sleep.
 *
 * @stop: Called after last netdevice attached to the hardware
 *	is disabled. This should turn off the hardware (at least
 *	it must turn off frame reception.)
 *	May be called right after add_interface if that rejects
 *	an interface. If you added any work onto the mac80211 workqueue
 *	you should ensure to cancel it on this callback.
 *	Must be implemented and can sleep.
 *
 * @suspend: Suspend the device; mac80211 itself will quiesce before and
 *	stop transmitting and doing any other configuration, and then
 *	ask the device to suspend. This is only invoked when WoWLAN is
 *	configured, otherwise the device is deconfigured completely and
 *	reconfigured at resume time.
 *	The driver may also impose special conditions under which it
 *	wants to use the "normal" suspend (deconfigure), say if it only
 *	supports WoWLAN when the device is associated. In this case, it
 *	must return 1 from this function.
 *
 * @resume: If WoWLAN was configured, this indicates that mac80211 is
 *	now resuming its operation, after this the device must be fully
 *	functional again. If this returns an error, the only way out is
 *	to also unregister the device. If it returns 1, then mac80211
 *	will also go through the regular complete restart on resume.
 *
 * @add_interface: Called when a netdevice attached to the hardware is
 *	enabled. Because it is not called for monitor mode devices, @start
 *	and @stop must be implemented.
 *	The driver should perform any initialization it needs before
 *	the device can be enabled. The initial configuration for the
 *	interface is given in the conf parameter.
 *	The callback may refuse to add an interface by returning a
 *	negative error code (which will be seen in userspace.)
 *	Must be implemented and can sleep.
 *
 * @change_interface: Called when a netdevice changes type. This callback
 *	is optional, but only if it is supported can interface types be
 *	switched while the interface is UP. The callback may sleep.
 *	Note that while an interface is being switched, it will not be
 *	found by the interface iteration callbacks.
 *
 * @remove_interface: Notifies a driver that an interface is going down.
 *	The @stop callback is called after this if it is the last interface
 *	and no monitor interfaces are present.
 *	When all interfaces are removed, the MAC address in the hardware
 *	must be cleared so the device no longer acknowledges packets,
 *	the mac_addr member of the conf structure is, however, set to the
 *	MAC address of the device going away.
 *	Hence, this callback must be implemented. It can sleep.
 *
 * @config: Handler for configuration requests. IEEE 802.11 code calls this
 *	function to change hardware configuration, e.g., channel.
 *	This function should never fail but returns a negative error code
 *	if it does. The callback can sleep.
 *
 * @bss_info_changed: Handler for configuration requests related to BSS
 *	parameters that may vary during BSS's lifespan, and may affect low
 *	level driver (e.g. assoc/disassoc status, erp parameters).
 *	This function should not be used if no BSS has been set, unless
 *	for association indication. The @changed parameter indicates which
 *	of the bss parameters has changed when a call is made. The callback
 *	can sleep.
 *
 * @tx_sync: Called before a frame is sent to an AP/GO. In the GO case, the
 *	driver should sync with the GO's powersaving so the device doesn't
 *	transmit the frame while the GO is asleep. In the regular AP case
 *	it may be used by drivers for devices implementing other restrictions
 *	on talking to APs, e.g. due to regulatory enforcement or just HW
 *	restrictions.
 *	This function is called for every authentication, association and
 *	action frame separately since applications might attempt to auth
 *	with multiple APs before chosing one to associate to. If it returns
 *	an error, the corresponding authentication, association or frame
 *	transmission is aborted and reported as having failed. It is always
 *	called after tuning to the correct channel.
 *	The callback might be called multiple times before @finish_tx_sync
 *	(but @finish_tx_sync will be called once for each) but in practice
 *	this is unlikely to happen. It can also refuse in that case if the
 *	driver cannot handle that situation.
 *	This callback can sleep.
 * @finish_tx_sync: Called as a counterpart to @tx_sync, unless that returned
 *	an error. This callback can sleep.
 *
 * @prepare_multicast: Prepare for multicast filter configuration.
 *	This callback is optional, and its return value is passed
 *	to configure_filter(). This callback must be atomic.
 *
 * @configure_filter: Configure the device's RX filter.
 *	See the section "Frame filtering" for more information.
 *	This callback must be implemented and can sleep.
 *
 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
 * 	must be set or cleared for a given STA. Must be atomic.
 *
 * @set_key: See the section "Hardware crypto acceleration"
 *	This callback is only called between add_interface and
 *	remove_interface calls, i.e. while the given virtual interface
 *	is enabled.
 *	Returns a negative error code if the key can't be added.
 *	The callback can sleep.
 *
 * @update_tkip_key: See the section "Hardware crypto acceleration"
 * 	This callback will be called in the context of Rx. Called for drivers
 * 	which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
 *	The callback must be atomic.
 *
 * @set_rekey_data: If the device supports GTK rekeying, for example while the
 *	host is suspended, it can assign this callback to retrieve the data
 *	necessary to do GTK rekeying, this is the KEK, KCK and replay counter.
 *	After rekeying was done it should (for example during resume) notify
 *	userspace of the new replay counter using ieee80211_gtk_rekey_notify().
 *
 * @hw_scan: Ask the hardware to service the scan request, no need to start
 *	the scan state machine in stack. The scan must honour the channel
 *	configuration done by the regulatory agent in the wiphy's
 *	registered bands. The hardware (or the driver) needs to make sure
 *	that power save is disabled.
 *	The @req ie/ie_len members are rewritten by mac80211 to contain the
 *	entire IEs after the SSID, so that drivers need not look at these
 *	at all but just send them after the SSID -- mac80211 includes the
 *	(extended) supported rates and HT information (where applicable).
 *	When the scan finishes, ieee80211_scan_completed() must be called;
 *	note that it also must be called when the scan cannot finish due to
 *	any error unless this callback returned a negative error code.
 *	The callback can sleep.
 *
 * @cancel_hw_scan: Ask the low-level tp cancel the active hw scan.
 *	The driver should ask the hardware to cancel the scan (if possible),
 *	but the scan will be completed only after the driver will call
 *	ieee80211_scan_completed().
 *	This callback is needed for wowlan, to prevent enqueueing a new
 *	scan_work after the low-level driver was already suspended.
 *	The callback can sleep.
 *
 * @sched_scan_start: Ask the hardware to start scanning repeatedly at
 *	specific intervals.  The driver must call the
 *	ieee80211_sched_scan_results() function whenever it finds results.
 *	This process will continue until sched_scan_stop is called.
 *
 * @sched_scan_stop: Tell the hardware to stop an ongoing scheduled scan.
 *
 * @sw_scan_start: Notifier function that is called just before a software scan
 *	is started. Can be NULL, if the driver doesn't need this notification.
 *	The callback can sleep.
 *
 * @sw_scan_complete: Notifier function that is called just after a
 *	software scan finished. Can be NULL, if the driver doesn't need
 *	this notification.
 *	The callback can sleep.
 *
 * @get_stats: Return low-level statistics.
 * 	Returns zero if statistics are available.
 *	The callback can sleep.
 *
 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
 *	callback should be provided to read the TKIP transmit IVs (both IV32
 *	and IV16) for the given key from hardware.
 *	The callback must be atomic.
 *
 * @set_frag_threshold: Configuration of fragmentation threshold. Assign this
 *	if the device does fragmentation by itself; if this callback is
 *	implemented then the stack will not do fragmentation.
 *	The callback can sleep.
 *
 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
 *	The callback can sleep.
 *
 * @sta_add: Notifies low level driver about addition of an associated station,
 *	AP, IBSS/WDS/mesh peer etc. This callback can sleep.
 *
 * @sta_remove: Notifies low level driver about removal of an associated
 *	station, AP, IBSS/WDS/mesh peer etc. This callback can sleep.
 *
 * @sta_notify: Notifies low level driver about power state transition of an
 *	associated station, AP,  IBSS/WDS/mesh peer etc. For a VIF operating
 *	in AP mode, this callback will not be called when the flag
 *	%IEEE80211_HW_AP_LINK_PS is set. Must be atomic.
 *
 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
 *	bursting) for a hardware TX queue.
 *	Returns a negative error code on failure.
 *	The callback can sleep.
 *
 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
 *	this is only used for IBSS mode BSSID merging and debugging. Is not a
 *	required function.
 *	The callback can sleep.
 *
 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
 *      Currently, this is only used for IBSS mode debugging. Is not a
 *	required function.
 *	The callback can sleep.
 *
 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
 *	with other STAs in the IBSS. This is only used in IBSS mode. This
 *	function is optional if the firmware/hardware takes full care of
 *	TSF synchronization.
 *	The callback can sleep.
 *
 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
 *	This is needed only for IBSS mode and the result of this function is
 *	used to determine whether to reply to Probe Requests.
 *	Returns non-zero if this device sent the last beacon.
 *	The callback can sleep.
 *
 * @ampdu_action: Perform a certain A-MPDU action
 * 	The RA/TID combination determines the destination and TID we want
 * 	the ampdu action to be performed for. The action is defined through
 * 	ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
 * 	is the first frame we expect to perform the action on. Notice
 * 	that TX/RX_STOP can pass NULL for this parameter.
 *	The @buf_size parameter is only valid when the action is set to
 *	%IEEE80211_AMPDU_TX_OPERATIONAL and indicates the peer's reorder
 *	buffer size (number of subframes) for this session -- the driver
 *	may neither send aggregates containing more subframes than this
 *	nor send aggregates in a way that lost frames would exceed the
 *	buffer size. If just limiting the aggregate size, this would be
 *	possible with a buf_size of 8:
 *	 - TX: 1.....7
 *	 - RX:  2....7 (lost frame #1)
 *	 - TX:        8..1...
 *	which is invalid since #1 was now re-transmitted well past the
 *	buffer size of 8. Correct ways to retransmit #1 would be:
 *	 - TX:       1 or 18 or 81
 *	Even "189" would be wrong since 1 could be lost again.
 *
 *	Returns a negative error code on failure.
 *	The callback can sleep.
 *
 * @get_survey: Return per-channel survey information
 *
 * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
 *	need to set wiphy->rfkill_poll to %true before registration,
 *	and need to call wiphy_rfkill_set_hw_state() in the callback.
 *	The callback can sleep.
 *
 * @set_coverage_class: Set slot time for given coverage class as specified
 *	in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout
 *	accordingly. This callback is not required and may sleep.
 *
 * @testmode_cmd: Implement a cfg80211 test mode command.
 *	The callback can sleep.
 * @testmode_dump: Implement a cfg80211 test mode dump. The callback can sleep.
 *
 * @flush: Flush all pending frames from the hardware queue, making sure
 *	that the hardware queues are empty. If the parameter @drop is set
 *	to %true, pending frames may be dropped. The callback can sleep.
 *
 * @channel_switch: Drivers that need (or want) to offload the channel
 *	switch operation for CSAs received from the AP may implement this
 *	callback. They must then call ieee80211_chswitch_done() to indicate
 *	completion of the channel switch.
 *
 * @napi_poll: Poll Rx queue for incoming data frames.
 *
 * @set_antenna: Set antenna configuration (tx_ant, rx_ant) on the device.
 *	Parameters are bitmaps of allowed antennas to use for TX/RX. Drivers may
 *	reject TX/RX mask combinations they cannot support by returning -EINVAL
 *	(also see nl80211.h @NL80211_ATTR_WIPHY_ANTENNA_TX).
 *
 * @get_antenna: Get current antenna configuration from device (tx_ant, rx_ant).
 *
 * @remain_on_channel: Starts an off-channel period on the given channel, must
 *	call back to ieee80211_ready_on_channel() when on that channel. Note
 *	that normal channel traffic is not stopped as this is intended for hw
 *	offload. Frames to transmit on the off-channel channel are transmitted
 *	normally except for the %IEEE80211_TX_CTL_TX_OFFCHAN flag. When the
 *	duration (which will always be non-zero) expires, the driver must call
 *	ieee80211_remain_on_channel_expired(). This callback may sleep.
 * @cancel_remain_on_channel: Requests that an ongoing off-channel period is
 *	aborted before it expires. This callback may sleep.
 *
 * @set_ringparam: Set tx and rx ring sizes.
 *
 * @get_ringparam: Get tx and rx ring current and maximum sizes.
 *
 * @tx_frames_pending: Check if there is any pending frame in the hardware
 *	queues before entering power save.
 *
 * @set_bitrate_mask: Set a mask of rates to be used for rate control selection
 *	when transmitting a frame. Currently only legacy rates are handled.
 *	The callback can sleep.
 * @rssi_callback: Notify driver when the average RSSI goes above/below
 *	thresholds that were registered previously. The callback can sleep.
 *
 * @release_buffered_frames: Release buffered frames according to the given
 *	parameters. In the case where the driver buffers some frames for
 *	sleeping stations mac80211 will use this callback to tell the driver
 *	to release some frames, either for PS-poll or uAPSD.
 *	Note that if the @more_data paramter is %false the driver must check
 *	if there are more frames on the given TIDs, and if there are more than
 *	the frames being released then it must still set the more-data bit in
 *	the frame. If the @more_data parameter is %true, then of course the
 *	more-data bit must always be set.
 *	The @tids parameter tells the driver which TIDs to release frames
 *	from, for PS-poll it will always have only a single bit set.
 *	In the case this is used for a PS-poll initiated release, the
 *	@num_frames parameter will always be 1 so code can be shared. In
 *	this case the driver must also set %IEEE80211_TX_STATUS_EOSP flag
 *	on the TX status (and must report TX status) so that the PS-poll
 *	period is properly ended. This is used to avoid sending multiple
 *	responses for a retried PS-poll frame.
 *	In the case this is used for uAPSD, the @num_frames parameter may be
 *	bigger than one, but the driver may send fewer frames (it must send
 *	at least one, however). In this case it is also responsible for
 *	setting the EOSP flag in the QoS header of the frames. Also, when the
 *	service period ends, the driver must set %IEEE80211_TX_STATUS_EOSP
 *	on the last frame in the SP. Alternatively, it may call the function
 *	ieee80211_sta_eosp_irqsafe() to inform mac80211 of the end of the SP.
 *	This callback must be atomic.
 * @allow_buffered_frames: Prepare device to allow the given number of frames
 *	to go out to the given station. The frames will be sent by mac80211
 *	via the usual TX path after this call. The TX information for frames
 *	released will also have the %IEEE80211_TX_CTL_POLL_RESPONSE flag set
 *	and the last one will also have %IEEE80211_TX_STATUS_EOSP set. In case
 *	frames from multiple TIDs are released and the driver might reorder
 *	them between the TIDs, it must set the %IEEE80211_TX_STATUS_EOSP flag
 *	on the last frame and clear it on all others and also handle the EOSP
 *	bit in the QoS header correctly. Alternatively, it can also call the
 *	ieee80211_sta_eosp_irqsafe() function.
 *	The @tids parameter is a bitmap and tells the driver which TIDs the
 *	frames will be on; it will at most have two bits set.
 *	This callback must be atomic.
 */
struct ieee80211_ops {
	void (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
	void (*tx_frags)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
			 struct ieee80211_sta *sta, struct sk_buff_head *skbs);
	int (*start)(struct ieee80211_hw *hw);
	void (*stop)(struct ieee80211_hw *hw);
#ifdef CONFIG_PM
	int (*suspend)(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan);
	int (*resume)(struct ieee80211_hw *hw);
#endif
	int (*add_interface)(struct ieee80211_hw *hw,
			     struct ieee80211_vif *vif);
	int (*change_interface)(struct ieee80211_hw *hw,
				struct ieee80211_vif *vif,
				enum nl80211_iftype new_type, bool p2p);
	void (*remove_interface)(struct ieee80211_hw *hw,
				 struct ieee80211_vif *vif);
	int (*config)(struct ieee80211_hw *hw, u32 changed);
	void (*bss_info_changed)(struct ieee80211_hw *hw,
				 struct ieee80211_vif *vif,
				 struct ieee80211_bss_conf *info,
				 u32 changed);

	int (*tx_sync)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
		       const u8 *bssid, enum ieee80211_tx_sync_type type);
	void (*finish_tx_sync)(struct ieee80211_hw *hw,
			       struct ieee80211_vif *vif,
			       const u8 *bssid,
			       enum ieee80211_tx_sync_type type);

	u64 (*prepare_multicast)(struct ieee80211_hw *hw,
				 struct netdev_hw_addr_list *mc_list);
	void (*configure_filter)(struct ieee80211_hw *hw,
				 unsigned int changed_flags,
				 unsigned int *total_flags,
				 u64 multicast);
	int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
		       bool set);
	int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
		       struct ieee80211_vif *vif, struct ieee80211_sta *sta,
		       struct ieee80211_key_conf *key);
	void (*update_tkip_key)(struct ieee80211_hw *hw,
				struct ieee80211_vif *vif,
				struct ieee80211_key_conf *conf,
				struct ieee80211_sta *sta,
				u32 iv32, u16 *phase1key);
	void (*set_rekey_data)(struct ieee80211_hw *hw,
			       struct ieee80211_vif *vif,
			       struct cfg80211_gtk_rekey_data *data);
	int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
		       struct cfg80211_scan_request *req);
	void (*cancel_hw_scan)(struct ieee80211_hw *hw,
			       struct ieee80211_vif *vif);
	int (*sched_scan_start)(struct ieee80211_hw *hw,
				struct ieee80211_vif *vif,
				struct cfg80211_sched_scan_request *req,
				struct ieee80211_sched_scan_ies *ies);
	void (*sched_scan_stop)(struct ieee80211_hw *hw,
			       struct ieee80211_vif *vif);
	void (*sw_scan_start)(struct ieee80211_hw *hw);
	void (*sw_scan_complete)(struct ieee80211_hw *hw);
	int (*get_stats)(struct ieee80211_hw *hw,
			 struct ieee80211_low_level_stats *stats);
	void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
			     u32 *iv32, u16 *iv16);
	int (*set_frag_threshold)(struct ieee80211_hw *hw, u32 value);
	int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
	int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
		       struct ieee80211_sta *sta);
	int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
			  struct ieee80211_sta *sta);
	void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
			enum sta_notify_cmd, struct ieee80211_sta *sta);
	int (*conf_tx)(struct ieee80211_hw *hw,
		       struct ieee80211_vif *vif, u16 queue,
		       const struct ieee80211_tx_queue_params *params);
	u64 (*get_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
	void (*set_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
			u64 tsf);
	void (*reset_tsf)(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
	int (*tx_last_beacon)(struct ieee80211_hw *hw);
	int (*ampdu_action)(struct ieee80211_hw *hw,
			    struct ieee80211_vif *vif,
			    enum ieee80211_ampdu_mlme_action action,
			    struct ieee80211_sta *sta, u16 tid, u16 *ssn,
			    u8 buf_size);
	int (*get_survey)(struct ieee80211_hw *hw, int idx,
		struct survey_info *survey);
	void (*rfkill_poll)(struct ieee80211_hw *hw);
	void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class);
#ifdef CONFIG_NL80211_TESTMODE
	int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
	int (*testmode_dump)(struct ieee80211_hw *hw, struct sk_buff *skb,
			     struct netlink_callback *cb,
			     void *data, int len);
#endif
	void (*flush)(struct ieee80211_hw *hw, bool drop);
	void (*channel_switch)(struct ieee80211_hw *hw,
			       struct ieee80211_channel_switch *ch_switch);
	int (*napi_poll)(struct ieee80211_hw *hw, int budget);
	int (*set_antenna)(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
	int (*get_antenna)(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);

	int (*remain_on_channel)(struct ieee80211_hw *hw,
				 struct ieee80211_channel *chan,
				 enum nl80211_channel_type channel_type,
				 int duration);
	int (*cancel_remain_on_channel)(struct ieee80211_hw *hw);
	int (*set_ringparam)(struct ieee80211_hw *hw, u32 tx, u32 rx);
	void (*get_ringparam)(struct ieee80211_hw *hw,
			      u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
	bool (*tx_frames_pending)(struct ieee80211_hw *hw);
	int (*set_bitrate_mask)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
				const struct cfg80211_bitrate_mask *mask);
	void (*rssi_callback)(struct ieee80211_hw *hw,
			      enum ieee80211_rssi_event rssi_event);

	void (*allow_buffered_frames)(struct ieee80211_hw *hw,
				      struct ieee80211_sta *sta,
				      u16 tids, int num_frames,
				      enum ieee80211_frame_release_type reason,
				      bool more_data);
	void (*release_buffered_frames)(struct ieee80211_hw *hw,
					struct ieee80211_sta *sta,
					u16 tids, int num_frames,
					enum ieee80211_frame_release_type reason,
					bool more_data);
};

/**
 * ieee80211_alloc_hw -  Allocate a new hardware device
 *
 * This must be called once for each hardware device. The returned pointer
 * must be used to refer to this device when calling other functions.
 * mac80211 allocates a private data area for the driver pointed to by
 * @priv in &struct ieee80211_hw, the size of this area is given as
 * @priv_data_len.
 *
 * @priv_data_len: length of private data
 * @ops: callbacks for this device
 */
struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
					const struct ieee80211_ops *ops);

/**
 * ieee80211_register_hw - Register hardware device
 *
 * You must call this function before any other functions in
 * mac80211. Note that before a hardware can be registered, you
 * need to fill the contained wiphy's information.
 *
 * @hw: the device to register as returned by ieee80211_alloc_hw()
 */
int ieee80211_register_hw(struct ieee80211_hw *hw);

/**
 * struct ieee80211_tpt_blink - throughput blink description
 * @throughput: throughput in Kbit/sec
 * @blink_time: blink time in milliseconds
 *	(full cycle, ie. one off + one on period)
 */
struct ieee80211_tpt_blink {
	int throughput;
	int blink_time;
};

/**
 * enum ieee80211_tpt_led_trigger_flags - throughput trigger flags
 * @IEEE80211_TPT_LEDTRIG_FL_RADIO: enable blinking with radio
 * @IEEE80211_TPT_LEDTRIG_FL_WORK: enable blinking when working
 * @IEEE80211_TPT_LEDTRIG_FL_CONNECTED: enable blinking when at least one
 *	interface is connected in some way, including being an AP
 */
enum ieee80211_tpt_led_trigger_flags {
	IEEE80211_TPT_LEDTRIG_FL_RADIO		= BIT(0),
	IEEE80211_TPT_LEDTRIG_FL_WORK		= BIT(1),
	IEEE80211_TPT_LEDTRIG_FL_CONNECTED	= BIT(2),
};

#ifdef CONFIG_MAC80211_LEDS
extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
extern char *__ieee80211_create_tpt_led_trigger(
				struct ieee80211_hw *hw, unsigned int flags,
				const struct ieee80211_tpt_blink *blink_table,
				unsigned int blink_table_len);
#endif
/**
 * ieee80211_get_tx_led_name - get name of TX LED
 *
 * mac80211 creates a transmit LED trigger for each wireless hardware
 * that can be used to drive LEDs if your driver registers a LED device.
 * This function returns the name (or %NULL if not configured for LEDs)
 * of the trigger so you can automatically link the LED device.
 *
 * @hw: the hardware to get the LED trigger name for
 */
static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
	return __ieee80211_get_tx_led_name(hw);
#else
	return NULL;
#endif
}

/**
 * ieee80211_get_rx_led_name - get name of RX LED
 *
 * mac80211 creates a receive LED trigger for each wireless hardware
 * that can be used to drive LEDs if your driver registers a LED device.
 * This function returns the name (or %NULL if not configured for LEDs)
 * of the trigger so you can automatically link the LED device.
 *
 * @hw: the hardware to get the LED trigger name for
 */
static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
	return __ieee80211_get_rx_led_name(hw);
#else
	return NULL;
#endif
}

/**
 * ieee80211_get_assoc_led_name - get name of association LED
 *
 * mac80211 creates a association LED trigger for each wireless hardware
 * that can be used to drive LEDs if your driver registers a LED device.
 * This function returns the name (or %NULL if not configured for LEDs)
 * of the trigger so you can automatically link the LED device.
 *
 * @hw: the hardware to get the LED trigger name for
 */
static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
	return __ieee80211_get_assoc_led_name(hw);
#else
	return NULL;
#endif
}

/**
 * ieee80211_get_radio_led_name - get name of radio LED
 *
 * mac80211 creates a radio change LED trigger for each wireless hardware
 * that can be used to drive LEDs if your driver registers a LED device.
 * This function returns the name (or %NULL if not configured for LEDs)
 * of the trigger so you can automatically link the LED device.
 *
 * @hw: the hardware to get the LED trigger name for
 */
static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
{
#ifdef CONFIG_MAC80211_LEDS
	return __ieee80211_get_radio_led_name(hw);
#else
	return NULL;
#endif
}

/**
 * ieee80211_create_tpt_led_trigger - create throughput LED trigger
 * @hw: the hardware to create the trigger for
 * @flags: trigger flags, see &enum ieee80211_tpt_led_trigger_flags
 * @blink_table: the blink table -- needs to be ordered by throughput
 * @blink_table_len: size of the blink table
 *
 * This function returns %NULL (in case of error, or if no LED
 * triggers are configured) or the name of the new trigger.
 * This function must be called before ieee80211_register_hw().
 */
static inline char *
ieee80211_create_tpt_led_trigger(struct ieee80211_hw *hw, unsigned int flags,
				 const struct ieee80211_tpt_blink *blink_table,
				 unsigned int blink_table_len)
{
#ifdef CONFIG_MAC80211_LEDS
	return __ieee80211_create_tpt_led_trigger(hw, flags, blink_table,
						  blink_table_len);
#else
	return NULL;
#endif
}

/**
 * ieee80211_unregister_hw - Unregister a hardware device
 *
 * This function instructs mac80211 to free allocated resources
 * and unregister netdevices from the networking subsystem.
 *
 * @hw: the hardware to unregister
 */
void ieee80211_unregister_hw(struct ieee80211_hw *hw);

/**
 * ieee80211_free_hw - free hardware descriptor
 *
 * This function frees everything that was allocated, including the
 * private data for the driver. You must call ieee80211_unregister_hw()
 * before calling this function.
 *
 * @hw: the hardware to free
 */
void ieee80211_free_hw(struct ieee80211_hw *hw);

/**
 * ieee80211_restart_hw - restart hardware completely
 *
 * Call this function when the hardware was restarted for some reason
 * (hardware error, ...) and the driver is unable to restore its state
 * by itself. mac80211 assumes that at this point the driver/hardware
 * is completely uninitialised and stopped, it starts the process by
 * calling the ->start() operation. The driver will need to reset all
 * internal state that it has prior to calling this function.
 *
 * @hw: the hardware to restart
 */
void ieee80211_restart_hw(struct ieee80211_hw *hw);

/** ieee80211_napi_schedule - schedule NAPI poll
 *
 * Use this function to schedule NAPI polling on a device.
 *
 * @hw: the hardware to start polling
 */
void ieee80211_napi_schedule(struct ieee80211_hw *hw);

/** ieee80211_napi_complete - complete NAPI polling
 *
 * Use this function to finish NAPI polling on a device.
 *
 * @hw: the hardware to stop polling
 */
void ieee80211_napi_complete(struct ieee80211_hw *hw);

/**
 * ieee80211_rx - receive frame
 *
 * Use this function to hand received frames to mac80211. The receive
 * buffer in @skb must start with an IEEE 802.11 header. In case of a
 * paged @skb is used, the driver is recommended to put the ieee80211
 * header of the frame on the linear part of the @skb to avoid memory
 * allocation and/or memcpy by the stack.
 *
 * This function may not be called in IRQ context. Calls to this function
 * for a single hardware must be synchronized against each other. Calls to
 * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be
 * mixed for a single hardware.
 *
 * In process context use instead ieee80211_rx_ni().
 *
 * @hw: the hardware this frame came in on
 * @skb: the buffer to receive, owned by mac80211 after this call
 */
void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);

/**
 * ieee80211_rx_irqsafe - receive frame
 *
 * Like ieee80211_rx() but can be called in IRQ context
 * (internally defers to a tasklet.)
 *
 * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not
 * be mixed for a single hardware.
 *
 * @hw: the hardware this frame came in on
 * @skb: the buffer to receive, owned by mac80211 after this call
 */
void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);

/**
 * ieee80211_rx_ni - receive frame (in process context)
 *
 * Like ieee80211_rx() but can be called in process context
 * (internally disables bottom halves).
 *
 * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
 * not be mixed for a single hardware.
 *
 * @hw: the hardware this frame came in on
 * @skb: the buffer to receive, owned by mac80211 after this call
 */
static inline void ieee80211_rx_ni(struct ieee80211_hw *hw,
				   struct sk_buff *skb)
{
	local_bh_disable();
	ieee80211_rx(hw, skb);
	local_bh_enable();
}

/**
 * ieee80211_sta_ps_transition - PS transition for connected sta
 *
 * When operating in AP mode with the %IEEE80211_HW_AP_LINK_PS
 * flag set, use this function to inform mac80211 about a connected station
 * entering/leaving PS mode.
 *
 * This function may not be called in IRQ context or with softirqs enabled.
 *
 * Calls to this function for a single hardware must be synchronized against
 * each other.
 *
 * The function returns -EINVAL when the requested PS mode is already set.
 *
 * @sta: currently connected sta
 * @start: start or stop PS
 */
int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start);

/**
 * ieee80211_sta_ps_transition_ni - PS transition for connected sta
 *                                  (in process context)
 *
 * Like ieee80211_sta_ps_transition() but can be called in process context
 * (internally disables bottom halves). Concurrent call restriction still
 * applies.
 *
 * @sta: currently connected sta
 * @start: start or stop PS
 */
static inline int ieee80211_sta_ps_transition_ni(struct ieee80211_sta *sta,
						  bool start)
{
	int ret;

	local_bh_disable();
	ret = ieee80211_sta_ps_transition(sta, start);
	local_bh_enable();

	return ret;
}

/*
 * The TX headroom reserved by mac80211 for its own tx_status functions.
 * This is enough for the radiotap header.
 */
#define IEEE80211_TX_STATUS_HEADROOM	14

/**
 * ieee80211_sta_set_buffered - inform mac80211 about driver-buffered frames
 * @sta: &struct ieee80211_sta pointer for the sleeping station
 * @tid: the TID that has buffered frames
 * @buffered: indicates whether or not frames are buffered for this TID
 *
 * If a driver buffers frames for a powersave station instead of passing
 * them back to mac80211 for retransmission, the station may still need
 * to be told that there are buffered frames via the TIM bit.
 *
 * This function informs mac80211 whether or not there are frames that are
 * buffered in the driver for a given TID; mac80211 can then use this data
 * to set the TIM bit (NOTE: This may call back into the driver's set_tim
 * call! Beware of the locking!)
 *
 * If all frames are released to the station (due to PS-poll or uAPSD)
 * then the driver needs to inform mac80211 that there no longer are
 * frames buffered. However, when the station wakes up mac80211 assumes
 * that all buffered frames will be transmitted and clears this data,
 * drivers need to make sure they inform mac80211 about all buffered
 * frames on the sleep transition (sta_notify() with %STA_NOTIFY_SLEEP).
 *
 * Note that technically mac80211 only needs to know this per AC, not per
 * TID, but since driver buffering will inevitably happen per TID (since
 * it is related to aggregation) it is easier to make mac80211 map the
 * TID to the AC as required instead of keeping track in all drivers that
 * use this API.
 */
void ieee80211_sta_set_buffered(struct ieee80211_sta *sta,
				u8 tid, bool buffered);

/**
 * ieee80211_tx_status - transmit status callback
 *
 * Call this function for all transmitted frames after they have been
 * transmitted. It is permissible to not call this function for
 * multicast frames but this can affect statistics.
 *
 * This function may not be called in IRQ context. Calls to this function
 * for a single hardware must be synchronized against each other. Calls
 * to this function, ieee80211_tx_status_ni() and ieee80211_tx_status_irqsafe()
 * may not be mixed for a single hardware.
 *
 * @hw: the hardware the frame was transmitted by
 * @skb: the frame that was transmitted, owned by mac80211 after this call
 */
void ieee80211_tx_status(struct ieee80211_hw *hw,
			 struct sk_buff *skb);

/**
 * ieee80211_tx_status_ni - transmit status callback (in process context)
 *
 * Like ieee80211_tx_status() but can be called in process context.
 *
 * Calls to this function, ieee80211_tx_status() and
 * ieee80211_tx_status_irqsafe() may not be mixed
 * for a single hardware.
 *
 * @hw: the hardware the frame was transmitted by
 * @skb: the frame that was transmitted, owned by mac80211 after this call
 */
static inline void ieee80211_tx_status_ni(struct ieee80211_hw *hw,
					  struct sk_buff *skb)
{
	local_bh_disable();
	ieee80211_tx_status(hw, skb);
	local_bh_enable();
}

/**
 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
 *
 * Like ieee80211_tx_status() but can be called in IRQ context
 * (internally defers to a tasklet.)
 *
 * Calls to this function, ieee80211_tx_status() and
 * ieee80211_tx_status_ni() may not be mixed for a single hardware.
 *
 * @hw: the hardware the frame was transmitted by
 * @skb: the frame that was transmitted, owned by mac80211 after this call
 */
void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
				 struct sk_buff *skb);

/**
 * ieee80211_report_low_ack - report non-responding station
 *
 * When operating in AP-mode, call this function to report a non-responding
 * connected STA.
 *
 * @sta: the non-responding connected sta
 * @num_packets: number of packets sent to @sta without a response
 */
void ieee80211_report_low_ack(struct ieee80211_sta *sta, u32 num_packets);

/**
 * ieee80211_beacon_get_tim - beacon generation function
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @tim_offset: pointer to variable that will receive the TIM IE offset.
 *	Set to 0 if invalid (in non-AP modes).
 * @tim_length: pointer to variable that will receive the TIM IE length,
 *	(including the ID and length bytes!).
 *	Set to 0 if invalid (in non-AP modes).
 *
 * If the driver implements beaconing modes, it must use this function to
 * obtain the beacon frame/template.
 *
 * If the beacon frames are generated by the host system (i.e., not in
 * hardware/firmware), the driver uses this function to get each beacon
 * frame from mac80211 -- it is responsible for calling this function
 * before the beacon is needed (e.g. based on hardware interrupt).
 *
 * If the beacon frames are generated by the device, then the driver
 * must use the returned beacon as the template and change the TIM IE
 * according to the current DTIM parameters/TIM bitmap.
 *
 * The driver is responsible for freeing the returned skb.
 */
struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
					 struct ieee80211_vif *vif,
					 u16 *tim_offset, u16 *tim_length);

/**
 * ieee80211_beacon_get - beacon generation function
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * See ieee80211_beacon_get_tim().
 */
static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
						   struct ieee80211_vif *vif)
{
	return ieee80211_beacon_get_tim(hw, vif, NULL, NULL);
}

/**
 * ieee80211_proberesp_get - retrieve a Probe Response template
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * Creates a Probe Response template which can, for example, be uploaded to
 * hardware. The destination address should be set by the caller.
 *
 * Can only be called in AP mode.
 */
struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw,
					struct ieee80211_vif *vif);

/**
 * ieee80211_pspoll_get - retrieve a PS Poll template
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * Creates a PS Poll a template which can, for example, uploaded to
 * hardware. The template must be updated after association so that correct
 * AID, BSSID and MAC address is used.
 *
 * Note: Caller (or hardware) is responsible for setting the
 * &IEEE80211_FCTL_PM bit.
 */
struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
				     struct ieee80211_vif *vif);

/**
 * ieee80211_nullfunc_get - retrieve a nullfunc template
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * Creates a Nullfunc template which can, for example, uploaded to
 * hardware. The template must be updated after association so that correct
 * BSSID and address is used.
 *
 * Note: Caller (or hardware) is responsible for setting the
 * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields.
 */
struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
				       struct ieee80211_vif *vif);

/**
 * ieee80211_probereq_get - retrieve a Probe Request template
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @ssid: SSID buffer
 * @ssid_len: length of SSID
 * @ie: buffer containing all IEs except SSID for the template
 * @ie_len: length of the IE buffer
 *
 * Creates a Probe Request template which can, for example, be uploaded to
 * hardware.
 */
struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
				       struct ieee80211_vif *vif,
				       const u8 *ssid, size_t ssid_len,
				       const u8 *ie, size_t ie_len);

/**
 * ieee80211_rts_get - RTS frame generation function
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @frame: pointer to the frame that is going to be protected by the RTS.
 * @frame_len: the frame length (in octets).
 * @frame_txctl: &struct ieee80211_tx_info of the frame.
 * @rts: The buffer where to store the RTS frame.
 *
 * If the RTS frames are generated by the host system (i.e., not in
 * hardware/firmware), the low-level driver uses this function to receive
 * the next RTS frame from the 802.11 code. The low-level is responsible
 * for calling this function before and RTS frame is needed.
 */
void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
		       const void *frame, size_t frame_len,
		       const struct ieee80211_tx_info *frame_txctl,
		       struct ieee80211_rts *rts);

/**
 * ieee80211_rts_duration - Get the duration field for an RTS frame
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @frame_len: the length of the frame that is going to be protected by the RTS.
 * @frame_txctl: &struct ieee80211_tx_info of the frame.
 *
 * If the RTS is generated in firmware, but the host system must provide
 * the duration field, the low-level driver uses this function to receive
 * the duration field value in little-endian byteorder.
 */
__le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
			      struct ieee80211_vif *vif, size_t frame_len,
			      const struct ieee80211_tx_info *frame_txctl);

/**
 * ieee80211_ctstoself_get - CTS-to-self frame generation function
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
 * @frame_len: the frame length (in octets).
 * @frame_txctl: &struct ieee80211_tx_info of the frame.
 * @cts: The buffer where to store the CTS-to-self frame.
 *
 * If the CTS-to-self frames are generated by the host system (i.e., not in
 * hardware/firmware), the low-level driver uses this function to receive
 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
 * for calling this function before and CTS-to-self frame is needed.
 */
void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
			     struct ieee80211_vif *vif,
			     const void *frame, size_t frame_len,
			     const struct ieee80211_tx_info *frame_txctl,
			     struct ieee80211_cts *cts);

/**
 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
 * @frame_txctl: &struct ieee80211_tx_info of the frame.
 *
 * If the CTS-to-self is generated in firmware, but the host system must provide
 * the duration field, the low-level driver uses this function to receive
 * the duration field value in little-endian byteorder.
 */
__le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
				    struct ieee80211_vif *vif,
				    size_t frame_len,
				    const struct ieee80211_tx_info *frame_txctl);

/**
 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @frame_len: the length of the frame.
 * @rate: the rate at which the frame is going to be transmitted.
 *
 * Calculate the duration field of some generic frame, given its
 * length and transmission rate (in 100kbps).
 */
__le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
					struct ieee80211_vif *vif,
					size_t frame_len,
					struct ieee80211_rate *rate);

/**
 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
 * @hw: pointer as obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * Function for accessing buffered broadcast and multicast frames. If
 * hardware/firmware does not implement buffering of broadcast/multicast
 * frames when power saving is used, 802.11 code buffers them in the host
 * memory. The low-level driver uses this function to fetch next buffered
 * frame. In most cases, this is used when generating beacon frame. This
 * function returns a pointer to the next buffered skb or NULL if no more
 * buffered frames are available.
 *
 * Note: buffered frames are returned only after DTIM beacon frame was
 * generated with ieee80211_beacon_get() and the low-level driver must thus
 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
 * NULL if the previous generated beacon was not DTIM, so the low-level driver
 * does not need to check for DTIM beacons separately and should be able to
 * use common code for all beacons.
 */
struct sk_buff *
ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);

/**
 * ieee80211_get_tkip_p1k_iv - get a TKIP phase 1 key for IV32
 *
 * This function returns the TKIP phase 1 key for the given IV32.
 *
 * @keyconf: the parameter passed with the set key
 * @iv32: IV32 to get the P1K for
 * @p1k: a buffer to which the key will be written, as 5 u16 values
 */
void ieee80211_get_tkip_p1k_iv(struct ieee80211_key_conf *keyconf,
			       u32 iv32, u16 *p1k);

/**
 * ieee80211_get_tkip_p1k - get a TKIP phase 1 key
 *
 * This function returns the TKIP phase 1 key for the IV32 taken
 * from the given packet.
 *
 * @keyconf: the parameter passed with the set key
 * @skb: the packet to take the IV32 value from that will be encrypted
 *	with this P1K
 * @p1k: a buffer to which the key will be written, as 5 u16 values
 */
static inline void ieee80211_get_tkip_p1k(struct ieee80211_key_conf *keyconf,
					  struct sk_buff *skb, u16 *p1k)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
	const u8 *data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
	u32 iv32 = get_unaligned_le32(&data[4]);

	ieee80211_get_tkip_p1k_iv(keyconf, iv32, p1k);
}

/**
 * ieee80211_get_tkip_rx_p1k - get a TKIP phase 1 key for RX
 *
 * This function returns the TKIP phase 1 key for the given IV32
 * and transmitter address.
 *
 * @keyconf: the parameter passed with the set key
 * @ta: TA that will be used with the key
 * @iv32: IV32 to get the P1K for
 * @p1k: a buffer to which the key will be written, as 5 u16 values
 */
void ieee80211_get_tkip_rx_p1k(struct ieee80211_key_conf *keyconf,
			       const u8 *ta, u32 iv32, u16 *p1k);

/**
 * ieee80211_get_tkip_p2k - get a TKIP phase 2 key
 *
 * This function computes the TKIP RC4 key for the IV values
 * in the packet.
 *
 * @keyconf: the parameter passed with the set key
 * @skb: the packet to take the IV32/IV16 values from that will be
 *	encrypted with this key
 * @p2k: a buffer to which the key will be written, 16 bytes
 */
void ieee80211_get_tkip_p2k(struct ieee80211_key_conf *keyconf,
			    struct sk_buff *skb, u8 *p2k);

/**
 * struct ieee80211_key_seq - key sequence counter
 *
 * @tkip: TKIP data, containing IV32 and IV16 in host byte order
 * @ccmp: PN data, most significant byte first (big endian,
 *	reverse order than in packet)
 * @aes_cmac: PN data, most significant byte first (big endian,
 *	reverse order than in packet)
 */
struct ieee80211_key_seq {
	union {
		struct {
			u32 iv32;
			u16 iv16;
		} tkip;
		struct {
			u8 pn[6];
		} ccmp;
		struct {
			u8 pn[6];
		} aes_cmac;
	};
};

/**
 * ieee80211_get_key_tx_seq - get key TX sequence counter
 *
 * @keyconf: the parameter passed with the set key
 * @seq: buffer to receive the sequence data
 *
 * This function allows a driver to retrieve the current TX IV/PN
 * for the given key. It must not be called if IV generation is
 * offloaded to the device.
 *
 * Note that this function may only be called when no TX processing
 * can be done concurrently, for example when queues are stopped
 * and the stop has been synchronized.
 */
void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
			      struct ieee80211_key_seq *seq);

/**
 * ieee80211_get_key_rx_seq - get key RX sequence counter
 *
 * @keyconf: the parameter passed with the set key
 * @tid: The TID, or -1 for the management frame value (CCMP only);
 *	the value on TID 0 is also used for non-QoS frames. For
 *	CMAC, only TID 0 is valid.
 * @seq: buffer to receive the sequence data
 *
 * This function allows a driver to retrieve the current RX IV/PNs
 * for the given key. It must not be called if IV checking is done
 * by the device and not by mac80211.
 *
 * Note that this function may only be called when no RX processing
 * can be done concurrently.
 */
void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
			      int tid, struct ieee80211_key_seq *seq);

/**
 * ieee80211_gtk_rekey_notify - notify userspace supplicant of rekeying
 * @vif: virtual interface the rekeying was done on
 * @bssid: The BSSID of the AP, for checking association
 * @replay_ctr: the new replay counter after GTK rekeying
 * @gfp: allocation flags
 */
void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
				const u8 *replay_ctr, gfp_t gfp);

/**
 * ieee80211_wake_queue - wake specific queue
 * @hw: pointer as obtained from ieee80211_alloc_hw().
 * @queue: queue number (counted from zero).
 *
 * Drivers should use this function instead of netif_wake_queue.
 */
void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);

/**
 * ieee80211_stop_queue - stop specific queue
 * @hw: pointer as obtained from ieee80211_alloc_hw().
 * @queue: queue number (counted from zero).
 *
 * Drivers should use this function instead of netif_stop_queue.
 */
void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);

/**
 * ieee80211_queue_stopped - test status of the queue
 * @hw: pointer as obtained from ieee80211_alloc_hw().
 * @queue: queue number (counted from zero).
 *
 * Drivers should use this function instead of netif_stop_queue.
 */

int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);

/**
 * ieee80211_stop_queues - stop all queues
 * @hw: pointer as obtained from ieee80211_alloc_hw().
 *
 * Drivers should use this function instead of netif_stop_queue.
 */
void ieee80211_stop_queues(struct ieee80211_hw *hw);

/**
 * ieee80211_wake_queues - wake all queues
 * @hw: pointer as obtained from ieee80211_alloc_hw().
 *
 * Drivers should use this function instead of netif_wake_queue.
 */
void ieee80211_wake_queues(struct ieee80211_hw *hw);

/**
 * ieee80211_scan_completed - completed hardware scan
 *
 * When hardware scan offload is used (i.e. the hw_scan() callback is
 * assigned) this function needs to be called by the driver to notify
 * mac80211 that the scan finished. This function can be called from
 * any context, including hardirq context.
 *
 * @hw: the hardware that finished the scan
 * @aborted: set to true if scan was aborted
 */
void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);

/**
 * ieee80211_sched_scan_results - got results from scheduled scan
 *
 * When a scheduled scan is running, this function needs to be called by the
 * driver whenever there are new scan results available.
 *
 * @hw: the hardware that is performing scheduled scans
 */
void ieee80211_sched_scan_results(struct ieee80211_hw *hw);

/**
 * ieee80211_sched_scan_stopped - inform that the scheduled scan has stopped
 *
 * When a scheduled scan is running, this function can be called by
 * the driver if it needs to stop the scan to perform another task.
 * Usual scenarios are drivers that cannot continue the scheduled scan
 * while associating, for instance.
 *
 * @hw: the hardware that is performing scheduled scans
 */
void ieee80211_sched_scan_stopped(struct ieee80211_hw *hw);

/**
 * ieee80211_iterate_active_interfaces - iterate active interfaces
 *
 * This function iterates over the interfaces associated with a given
 * hardware that are currently active and calls the callback for them.
 * This function allows the iterator function to sleep, when the iterator
 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
 * be used.
 * Does not iterate over a new interface during add_interface()
 *
 * @hw: the hardware struct of which the interfaces should be iterated over
 * @iterator: the iterator function to call
 * @data: first argument of the iterator function
 */
void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
					 void (*iterator)(void *data, u8 *mac,
						struct ieee80211_vif *vif),
					 void *data);

/**
 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
 *
 * This function iterates over the interfaces associated with a given
 * hardware that are currently active and calls the callback for them.
 * This function requires the iterator callback function to be atomic,
 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
 * Does not iterate over a new interface during add_interface()
 *
 * @hw: the hardware struct of which the interfaces should be iterated over
 * @iterator: the iterator function to call, cannot sleep
 * @data: first argument of the iterator function
 */
void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
						void (*iterator)(void *data,
						    u8 *mac,
						    struct ieee80211_vif *vif),
						void *data);

/**
 * ieee80211_queue_work - add work onto the mac80211 workqueue
 *
 * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
 * This helper ensures drivers are not queueing work when they should not be.
 *
 * @hw: the hardware struct for the interface we are adding work for
 * @work: the work we want to add onto the mac80211 workqueue
 */
void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);

/**
 * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
 *
 * Drivers and mac80211 use this to queue delayed work onto the mac80211
 * workqueue.
 *
 * @hw: the hardware struct for the interface we are adding work for
 * @dwork: delayable work to queue onto the mac80211 workqueue
 * @delay: number of jiffies to wait before queueing
 */
void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
				  struct delayed_work *dwork,
				  unsigned long delay);

/**
 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
 * @sta: the station for which to start a BA session
 * @tid: the TID to BA on.
 * @timeout: session timeout value (in TUs)
 *
 * Return: success if addBA request was sent, failure otherwise
 *
 * Although mac80211/low level driver/user space application can estimate
 * the need to start aggregation on a certain RA/TID, the session level
 * will be managed by the mac80211.
 */
int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid,
				  u16 timeout);

/**
 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
 * @vif: &struct ieee80211_vif pointer from the add_interface callback
 * @ra: receiver address of the BA session recipient.
 * @tid: the TID to BA on.
 *
 * This function must be called by low level driver once it has
 * finished with preparations for the BA session. It can be called
 * from any context.
 */
void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
				      u16 tid);

/**
 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
 * @sta: the station whose BA session to stop
 * @tid: the TID to stop BA.
 *
 * Return: negative error if the TID is invalid, or no aggregation active
 *
 * Although mac80211/low level driver/user space application can estimate
 * the need to stop aggregation on a certain RA/TID, the session level
 * will be managed by the mac80211.
 */
int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid);

/**
 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
 * @vif: &struct ieee80211_vif pointer from the add_interface callback
 * @ra: receiver address of the BA session recipient.
 * @tid: the desired TID to BA on.
 *
 * This function must be called by low level driver once it has
 * finished with preparations for the BA session tear down. It
 * can be called from any context.
 */
void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
				     u16 tid);

/**
 * ieee80211_find_sta - find a station
 *
 * @vif: virtual interface to look for station on
 * @addr: station's address
 *
 * This function must be called under RCU lock and the
 * resulting pointer is only valid under RCU lock as well.
 */
struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
					 const u8 *addr);

/**
 * ieee80211_find_sta_by_ifaddr - find a station on hardware
 *
 * @hw: pointer as obtained from ieee80211_alloc_hw()
 * @addr: remote station's address
 * @localaddr: local address (vif->sdata->vif.addr). Use NULL for 'any'.
 *
 * This function must be called under RCU lock and the
 * resulting pointer is only valid under RCU lock as well.
 *
 * NOTE: You may pass NULL for localaddr, but then you will just get
 *      the first STA that matches the remote address 'addr'.
 *      We can have multiple STA associated with multiple
 *      logical stations (e.g. consider a station connecting to another
 *      BSSID on the same AP hardware without disconnecting first).
 *      In this case, the result of this method with localaddr NULL
 *      is not reliable.
 *
 * DO NOT USE THIS FUNCTION with localaddr NULL if at all possible.
 */
struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
					       const u8 *addr,
					       const u8 *localaddr);

/**
 * ieee80211_sta_block_awake - block station from waking up
 * @hw: the hardware
 * @pubsta: the station
 * @block: whether to block or unblock
 *
 * Some devices require that all frames that are on the queues
 * for a specific station that went to sleep are flushed before
 * a poll response or frames after the station woke up can be
 * delivered to that it. Note that such frames must be rejected
 * by the driver as filtered, with the appropriate status flag.
 *
 * This function allows implementing this mode in a race-free
 * manner.
 *
 * To do this, a driver must keep track of the number of frames
 * still enqueued for a specific station. If this number is not
 * zero when the station goes to sleep, the driver must call
 * this function to force mac80211 to consider the station to
 * be asleep regardless of the station's actual state. Once the
 * number of outstanding frames reaches zero, the driver must
 * call this function again to unblock the station. That will
 * cause mac80211 to be able to send ps-poll responses, and if
 * the station queried in the meantime then frames will also
 * be sent out as a result of this. Additionally, the driver
 * will be notified that the station woke up some time after
 * it is unblocked, regardless of whether the station actually
 * woke up while blocked or not.
 */
void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
			       struct ieee80211_sta *pubsta, bool block);

/**
 * ieee80211_sta_eosp - notify mac80211 about end of SP
 * @pubsta: the station
 *
 * When a device transmits frames in a way that it can't tell
 * mac80211 in the TX status about the EOSP, it must clear the
 * %IEEE80211_TX_STATUS_EOSP bit and call this function instead.
 * This applies for PS-Poll as well as uAPSD.
 *
 * Note that there is no non-_irqsafe version right now as
 * it wasn't needed, but just like _tx_status() and _rx()
 * must not be mixed in irqsafe/non-irqsafe versions, this
 * function must not be mixed with those either. Use the
 * all irqsafe, or all non-irqsafe, don't mix! If you need
 * the non-irqsafe version of this, you need to add it.
 */
void ieee80211_sta_eosp_irqsafe(struct ieee80211_sta *pubsta);

/**
 * ieee80211_iter_keys - iterate keys programmed into the device
 * @hw: pointer obtained from ieee80211_alloc_hw()
 * @vif: virtual interface to iterate, may be %NULL for all
 * @iter: iterator function that will be called for each key
 * @iter_data: custom data to pass to the iterator function
 *
 * This function can be used to iterate all the keys known to
 * mac80211, even those that weren't previously programmed into
 * the device. This is intended for use in WoWLAN if the device
 * needs reprogramming of the keys during suspend. Note that due
 * to locking reasons, it is also only safe to call this at few
 * spots since it must hold the RTNL and be able to sleep.
 *
 * The order in which the keys are iterated matches the order
 * in which they were originally installed and handed to the
 * set_key callback.
 */
void ieee80211_iter_keys(struct ieee80211_hw *hw,
			 struct ieee80211_vif *vif,
			 void (*iter)(struct ieee80211_hw *hw,
				      struct ieee80211_vif *vif,
				      struct ieee80211_sta *sta,
				      struct ieee80211_key_conf *key,
				      void *data),
			 void *iter_data);

/**
 * ieee80211_ap_probereq_get - retrieve a Probe Request template
 * @hw: pointer obtained from ieee80211_alloc_hw().
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * Creates a Probe Request template which can, for example, be uploaded to
 * hardware. The template is filled with bssid, ssid and supported rate
 * information. This function must only be called from within the
 * .bss_info_changed callback function and only in managed mode. The function
 * is only useful when the interface is associated, otherwise it will return
 * NULL.
 */
struct sk_buff *ieee80211_ap_probereq_get(struct ieee80211_hw *hw,
					  struct ieee80211_vif *vif);

/**
 * ieee80211_beacon_loss - inform hardware does not receive beacons
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER and
 * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the
 * hardware is not receiving beacons with this function.
 */
void ieee80211_beacon_loss(struct ieee80211_vif *vif);

/**
 * ieee80211_connection_loss - inform hardware has lost connection to the AP
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTER, and
 * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver
 * needs to inform if the connection to the AP has been lost.
 *
 * This function will cause immediate change to disassociated state,
 * without connection recovery attempts.
 */
void ieee80211_connection_loss(struct ieee80211_vif *vif);

/**
 * ieee80211_resume_disconnect - disconnect from AP after resume
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * Instructs mac80211 to disconnect from the AP after resume.
 * Drivers can use this after WoWLAN if they know that the
 * connection cannot be kept up, for example because keys were
 * used while the device was asleep but the replay counters or
 * similar cannot be retrieved from the device during resume.
 *
 * Note that due to implementation issues, if the driver uses
 * the reconfiguration functionality during resume the interface
 * will still be added as associated first during resume and then
 * disconnect normally later.
 *
 * This function can only be called from the resume callback and
 * the driver must not be holding any of its own locks while it
 * calls this function, or at least not any locks it needs in the
 * key configuration paths (if it supports HW crypto).
 */
void ieee80211_resume_disconnect(struct ieee80211_vif *vif);

/**
 * ieee80211_disable_dyn_ps - force mac80211 to temporarily disable dynamic psm
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * Some hardware require full power save to manage simultaneous BT traffic
 * on the WLAN frequency. Full PSM is required periodically, whenever there are
 * burst of BT traffic. The hardware gets information of BT traffic via
 * hardware co-existence lines, and consequentially requests mac80211 to
 * (temporarily) enter full psm.
 * This function will only temporarily disable dynamic PS, not enable PSM if
 * it was not already enabled.
 * The driver must make sure to re-enable dynamic PS using
 * ieee80211_enable_dyn_ps() if the driver has disabled it.
 *
 */
void ieee80211_disable_dyn_ps(struct ieee80211_vif *vif);

/**
 * ieee80211_enable_dyn_ps - restore dynamic psm after being disabled
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * This function restores dynamic PS after being temporarily disabled via
 * ieee80211_disable_dyn_ps(). Each ieee80211_disable_dyn_ps() call must
 * be coupled with an eventual call to this function.
 *
 */
void ieee80211_enable_dyn_ps(struct ieee80211_vif *vif);

/**
 * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring
 *	rssi threshold triggered
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @rssi_event: the RSSI trigger event type
 * @gfp: context flags
 *
 * When the %IEEE80211_HW_SUPPORTS_CQM_RSSI is set, and a connection quality
 * monitoring is configured with an rssi threshold, the driver will inform
 * whenever the rssi level reaches the threshold.
 */
void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif,
			       enum nl80211_cqm_rssi_threshold_event rssi_event,
			       gfp_t gfp);

/**
 * ieee80211_get_operstate - get the operstate of the vif
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 *
 * The driver might need to know the operstate of the net_device
 * (specifically, whether the link is IF_OPER_UP after resume)
 */
unsigned char ieee80211_get_operstate(struct ieee80211_vif *vif);

/**
 * ieee80211_chswitch_done - Complete channel switch process
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @success: make the channel switch successful or not
 *
 * Complete the channel switch post-process: set the new operational channel
 * and wake up the suspended queues.
 */
void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success);

/**
 * ieee80211_request_smps - request SM PS transition
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @smps_mode: new SM PS mode
 *
 * This allows the driver to request an SM PS transition in managed
 * mode. This is useful when the driver has more information than
 * the stack about possible interference, for example by bluetooth.
 */
void ieee80211_request_smps(struct ieee80211_vif *vif,
			    enum ieee80211_smps_mode smps_mode);

/**
 * ieee80211_key_removed - disable hw acceleration for key
 * @key_conf: The key hw acceleration should be disabled for
 *
 * This allows drivers to indicate that the given key has been
 * removed from hardware acceleration, due to a new key that
 * was added. Don't use this if the key can continue to be used
 * for TX, if the key restriction is on RX only it is permitted
 * to keep the key for TX only and not call this function.
 *
 * Due to locking constraints, it may only be called during
 * @set_key. This function must be allowed to sleep, and the
 * key it tries to disable may still be used until it returns.
 */
void ieee80211_key_removed(struct ieee80211_key_conf *key_conf);

/**
 * ieee80211_ready_on_channel - notification of remain-on-channel start
 * @hw: pointer as obtained from ieee80211_alloc_hw()
 */
void ieee80211_ready_on_channel(struct ieee80211_hw *hw);

/**
 * ieee80211_remain_on_channel_expired - remain_on_channel duration expired
 * @hw: pointer as obtained from ieee80211_alloc_hw()
 */
void ieee80211_remain_on_channel_expired(struct ieee80211_hw *hw);

/**
 * ieee80211_stop_rx_ba_session - callback to stop existing BA sessions
 *
 * in order not to harm the system performance and user experience, the device
 * may request not to allow any rx ba session and tear down existing rx ba
 * sessions based on system constraints such as periodic BT activity that needs
 * to limit wlan activity (eg.sco or a2dp)."
 * in such cases, the intention is to limit the duration of the rx ppdu and
 * therefore prevent the peer device to use a-mpdu aggregation.
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @ba_rx_bitmap: Bit map of open rx ba per tid
 * @addr: & to bssid mac address
 */
void ieee80211_stop_rx_ba_session(struct ieee80211_vif *vif, u16 ba_rx_bitmap,
				  const u8 *addr);

/**
 * ieee80211_send_bar - send a BlockAckReq frame
 *
 * can be used to flush pending frames from the peer's aggregation reorder
 * buffer.
 *
 * @vif: &struct ieee80211_vif pointer from the add_interface callback.
 * @ra: the peer's destination address
 * @tid: the TID of the aggregation session
 * @ssn: the new starting sequence number for the receiver
 */
void ieee80211_send_bar(struct ieee80211_vif *vif, u8 *ra, u16 tid, u16 ssn);

/* Rate control API */

/**
 * enum rate_control_changed - flags to indicate which parameter changed
 *
 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
 *	changed, rate control algorithm can update its internal state if needed.
 * @IEEE80211_RC_SMPS_CHANGED: The SMPS state of the station changed, the rate
 *	control algorithm needs to adjust accordingly.
 */
enum rate_control_changed {
	IEEE80211_RC_HT_CHANGED		= BIT(0),
	IEEE80211_RC_SMPS_CHANGED	= BIT(1),
};

/**
 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
 *
 * @hw: The hardware the algorithm is invoked for.
 * @sband: The band this frame is being transmitted on.
 * @bss_conf: the current BSS configuration
 * @reported_rate: The rate control algorithm can fill this in to indicate
 *	which rate should be reported to userspace as the current rate and
 *	used for rate calculations in the mesh network.
 * @rts: whether RTS will be used for this frame because it is longer than the
 *	RTS threshold
 * @short_preamble: whether mac80211 will request short-preamble transmission
 *	if the selected rate supports it
 * @max_rate_idx: user-requested maximum rate (not MCS for now)
 *	(deprecated; this will be removed once drivers get updated to use
 *	rate_idx_mask)
 * @rate_idx_mask: user-requested rate mask (not MCS for now)
 * @skb: the skb that will be transmitted, the control information in it needs
 *	to be filled in
 * @bss: whether this frame is sent out in AP or IBSS mode
 */
struct ieee80211_tx_rate_control {
	struct ieee80211_hw *hw;
	struct ieee80211_supported_band *sband;
	struct ieee80211_bss_conf *bss_conf;
	struct sk_buff *skb;
	struct ieee80211_tx_rate reported_rate;
	bool rts, short_preamble;
	u8 max_rate_idx;
	u32 rate_idx_mask;
	bool bss;
};

struct rate_control_ops {
	struct module *module;
	const char *name;
	void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
	void (*free)(void *priv);

	void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
	void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
			  struct ieee80211_sta *sta, void *priv_sta);
	void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
			    struct ieee80211_sta *sta,
			    void *priv_sta, u32 changed,
			    enum nl80211_channel_type oper_chan_type);
	void (*free_sta)(void *priv, struct ieee80211_sta *sta,
			 void *priv_sta);

	void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
			  struct ieee80211_sta *sta, void *priv_sta,
			  struct sk_buff *skb);
	void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
			 struct ieee80211_tx_rate_control *txrc);

	void (*add_sta_debugfs)(void *priv, void *priv_sta,
				struct dentry *dir);
	void (*remove_sta_debugfs)(void *priv, void *priv_sta);
};

static inline int rate_supported(struct ieee80211_sta *sta,
				 enum ieee80211_band band,
				 int index)
{
	return (sta == NULL || sta->supp_rates[band] & BIT(index));
}

/**
 * rate_control_send_low - helper for drivers for management/no-ack frames
 *
 * Rate control algorithms that agree to use the lowest rate to
 * send management frames and NO_ACK data with the respective hw
 * retries should use this in the beginning of their mac80211 get_rate
 * callback. If true is returned the rate control can simply return.
 * If false is returned we guarantee that sta and sta and priv_sta is
 * not null.
 *
 * Rate control algorithms wishing to do more intelligent selection of
 * rate for multicast/broadcast frames may choose to not use this.
 *
 * @sta: &struct ieee80211_sta pointer to the target destination. Note
 * 	that this may be null.
 * @priv_sta: private rate control structure. This may be null.
 * @txrc: rate control information we sholud populate for mac80211.
 */
bool rate_control_send_low(struct ieee80211_sta *sta,
			   void *priv_sta,
			   struct ieee80211_tx_rate_control *txrc);


static inline s8
rate_lowest_index(struct ieee80211_supported_band *sband,
		  struct ieee80211_sta *sta)
{
	int i;

	for (i = 0; i < sband->n_bitrates; i++)
		if (rate_supported(sta, sband->band, i))
			return i;

	/* warn when we cannot find a rate. */
	WARN_ON_ONCE(1);

	/* and return 0 (the lowest index) */
	return 0;
}

static inline
bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
			      struct ieee80211_sta *sta)
{
	unsigned int i;

	for (i = 0; i < sband->n_bitrates; i++)
		if (rate_supported(sta, sband->band, i))
			return true;
	return false;
}

int ieee80211_rate_control_register(struct rate_control_ops *ops);
void ieee80211_rate_control_unregister(struct rate_control_ops *ops);

static inline bool
conf_is_ht20(struct ieee80211_conf *conf)
{
	return conf->channel_type == NL80211_CHAN_HT20;
}

static inline bool
conf_is_ht40_minus(struct ieee80211_conf *conf)
{
	return conf->channel_type == NL80211_CHAN_HT40MINUS;
}

static inline bool
conf_is_ht40_plus(struct ieee80211_conf *conf)
{
	return conf->channel_type == NL80211_CHAN_HT40PLUS;
}

static inline bool
conf_is_ht40(struct ieee80211_conf *conf)
{
	return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
}

static inline bool
conf_is_ht(struct ieee80211_conf *conf)
{
	return conf->channel_type != NL80211_CHAN_NO_HT;
}

static inline enum nl80211_iftype
ieee80211_iftype_p2p(enum nl80211_iftype type, bool p2p)
{
	if (p2p) {
		switch (type) {
		case NL80211_IFTYPE_STATION:
			return NL80211_IFTYPE_P2P_CLIENT;
		case NL80211_IFTYPE_AP:
			return NL80211_IFTYPE_P2P_GO;
		default:
			break;
		}
	}
	return type;
}

static inline enum nl80211_iftype
ieee80211_vif_type_p2p(struct ieee80211_vif *vif)
{
	return ieee80211_iftype_p2p(vif->type, vif->p2p);
}

void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
				   int rssi_min_thold,
				   int rssi_max_thold);

void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif);

int ieee80211_add_srates_ie(struct ieee80211_vif *vif, struct sk_buff *skb);

int ieee80211_add_ext_srates_ie(struct ieee80211_vif *vif,
				struct sk_buff *skb);
#endif /* MAC80211_H */