Home Home > GIT Browse
summaryrefslogtreecommitdiff
blob: 00de793e6423a03c235a6678ee1d16d88edd8f4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
/*
 * Copyright (c) 2014-2016, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <soc/tegra/ivc.h>

#define TEGRA_IVC_ALIGN 64

/*
 * IVC channel reset protocol.
 *
 * Each end uses its tx_channel.state to indicate its synchronization state.
 */
enum tegra_ivc_state {
	/*
	 * This value is zero for backwards compatibility with services that
	 * assume channels to be initially zeroed. Such channels are in an
	 * initially valid state, but cannot be asynchronously reset, and must
	 * maintain a valid state at all times.
	 *
	 * The transmitting end can enter the established state from the sync or
	 * ack state when it observes the receiving endpoint in the ack or
	 * established state, indicating that has cleared the counters in our
	 * rx_channel.
	 */
	TEGRA_IVC_STATE_ESTABLISHED = 0,

	/*
	 * If an endpoint is observed in the sync state, the remote endpoint is
	 * allowed to clear the counters it owns asynchronously with respect to
	 * the current endpoint. Therefore, the current endpoint is no longer
	 * allowed to communicate.
	 */
	TEGRA_IVC_STATE_SYNC,

	/*
	 * When the transmitting end observes the receiving end in the sync
	 * state, it can clear the w_count and r_count and transition to the ack
	 * state. If the remote endpoint observes us in the ack state, it can
	 * return to the established state once it has cleared its counters.
	 */
	TEGRA_IVC_STATE_ACK
};

/*
 * This structure is divided into two-cache aligned parts, the first is only
 * written through the tx.channel pointer, while the second is only written
 * through the rx.channel pointer. This delineates ownership of the cache
 * lines, which is critical to performance and necessary in non-cache coherent
 * implementations.
 */
struct tegra_ivc_header {
	union {
		struct {
			/* fields owned by the transmitting end */
			u32 count;
			u32 state;
		};

		u8 pad[TEGRA_IVC_ALIGN];
	} tx;

	union {
		/* fields owned by the receiving end */
		u32 count;
		u8 pad[TEGRA_IVC_ALIGN];
	} rx;
};

static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys)
{
	if (!ivc->peer)
		return;

	dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN,
				DMA_FROM_DEVICE);
}

static inline void tegra_ivc_flush(struct tegra_ivc *ivc, dma_addr_t phys)
{
	if (!ivc->peer)
		return;

	dma_sync_single_for_device(ivc->peer, phys, TEGRA_IVC_ALIGN,
				   DMA_TO_DEVICE);
}

static inline bool tegra_ivc_empty(struct tegra_ivc *ivc,
				   struct tegra_ivc_header *header)
{
	/*
	 * This function performs multiple checks on the same values with
	 * security implications, so create snapshots with READ_ONCE() to
	 * ensure that these checks use the same values.
	 */
	u32 tx = READ_ONCE(header->tx.count);
	u32 rx = READ_ONCE(header->rx.count);

	/*
	 * Perform an over-full check to prevent denial of service attacks
	 * where a server could be easily fooled into believing that there's
	 * an extremely large number of frames ready, since receivers are not
	 * expected to check for full or over-full conditions.
	 *
	 * Although the channel isn't empty, this is an invalid case caused by
	 * a potentially malicious peer, so returning empty is safer, because
	 * it gives the impression that the channel has gone silent.
	 */
	if (tx - rx > ivc->num_frames)
		return true;

	return tx == rx;
}

static inline bool tegra_ivc_full(struct tegra_ivc *ivc,
				  struct tegra_ivc_header *header)
{
	u32 tx = READ_ONCE(header->tx.count);
	u32 rx = READ_ONCE(header->rx.count);

	/*
	 * Invalid cases where the counters indicate that the queue is over
	 * capacity also appear full.
	 */
	return tx - rx >= ivc->num_frames;
}

static inline u32 tegra_ivc_available(struct tegra_ivc *ivc,
				      struct tegra_ivc_header *header)
{
	u32 tx = READ_ONCE(header->tx.count);
	u32 rx = READ_ONCE(header->rx.count);

	/*
	 * This function isn't expected to be used in scenarios where an
	 * over-full situation can lead to denial of service attacks. See the
	 * comment in tegra_ivc_empty() for an explanation about special
	 * over-full considerations.
	 */
	return tx - rx;
}

static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc)
{
	WRITE_ONCE(ivc->tx.channel->tx.count,
		   READ_ONCE(ivc->tx.channel->tx.count) + 1);

	if (ivc->tx.position == ivc->num_frames - 1)
		ivc->tx.position = 0;
	else
		ivc->tx.position++;
}

static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc)
{
	WRITE_ONCE(ivc->rx.channel->rx.count,
		   READ_ONCE(ivc->rx.channel->rx.count) + 1);

	if (ivc->rx.position == ivc->num_frames - 1)
		ivc->rx.position = 0;
	else
		ivc->rx.position++;
}

static inline int tegra_ivc_check_read(struct tegra_ivc *ivc)
{
	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);

	/*
	 * tx.channel->state is set locally, so it is not synchronized with
	 * state from the remote peer. The remote peer cannot reset its
	 * transmit counters until we've acknowledged its synchronization
	 * request, so no additional synchronization is required because an
	 * asynchronous transition of rx.channel->state to
	 * TEGRA_IVC_STATE_ACK is not allowed.
	 */
	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
		return -ECONNRESET;

	/*
	 * Avoid unnecessary invalidations when performing repeated accesses
	 * to an IVC channel by checking the old queue pointers first.
	 *
	 * Synchronization is only necessary when these pointers indicate
	 * empty or full.
	 */
	if (!tegra_ivc_empty(ivc, ivc->rx.channel))
		return 0;

	tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);

	if (tegra_ivc_empty(ivc, ivc->rx.channel))
		return -ENOSPC;

	return 0;
}

static inline int tegra_ivc_check_write(struct tegra_ivc *ivc)
{
	unsigned int offset = offsetof(struct tegra_ivc_header, rx.count);

	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
		return -ECONNRESET;

	if (!tegra_ivc_full(ivc, ivc->tx.channel))
		return 0;

	tegra_ivc_invalidate(ivc, ivc->tx.phys + offset);

	if (tegra_ivc_full(ivc, ivc->tx.channel))
		return -ENOSPC;

	return 0;
}

static void *tegra_ivc_frame_virt(struct tegra_ivc *ivc,
				  struct tegra_ivc_header *header,
				  unsigned int frame)
{
	if (WARN_ON(frame >= ivc->num_frames))
		return ERR_PTR(-EINVAL);

	return (void *)(header + 1) + ivc->frame_size * frame;
}

static inline dma_addr_t tegra_ivc_frame_phys(struct tegra_ivc *ivc,
					      dma_addr_t phys,
					      unsigned int frame)
{
	unsigned long offset;

	offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame;

	return phys + offset;
}

static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc,
					      dma_addr_t phys,
					      unsigned int frame,
					      unsigned int offset,
					      size_t size)
{
	if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
		return;

	phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;

	dma_sync_single_for_cpu(ivc->peer, phys, size, DMA_FROM_DEVICE);
}

static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc,
					 dma_addr_t phys,
					 unsigned int frame,
					 unsigned int offset,
					 size_t size)
{
	if (!ivc->peer || WARN_ON(frame >= ivc->num_frames))
		return;

	phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset;

	dma_sync_single_for_device(ivc->peer, phys, size, DMA_TO_DEVICE);
}

/* directly peek at the next frame rx'ed */
void *tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc)
{
	int err;

	if (WARN_ON(ivc == NULL))
		return ERR_PTR(-EINVAL);

	err = tegra_ivc_check_read(ivc);
	if (err < 0)
		return ERR_PTR(err);

	/*
	 * Order observation of ivc->rx.position potentially indicating new
	 * data before data read.
	 */
	smp_rmb();

	tegra_ivc_invalidate_frame(ivc, ivc->rx.phys, ivc->rx.position, 0,
				   ivc->frame_size);

	return tegra_ivc_frame_virt(ivc, ivc->rx.channel, ivc->rx.position);
}
EXPORT_SYMBOL(tegra_ivc_read_get_next_frame);

int tegra_ivc_read_advance(struct tegra_ivc *ivc)
{
	unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
	unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
	int err;

	/*
	 * No read barriers or synchronization here: the caller is expected to
	 * have already observed the channel non-empty. This check is just to
	 * catch programming errors.
	 */
	err = tegra_ivc_check_read(ivc);
	if (err < 0)
		return err;

	tegra_ivc_advance_rx(ivc);

	tegra_ivc_flush(ivc, ivc->rx.phys + rx);

	/*
	 * Ensure our write to ivc->rx.position occurs before our read from
	 * ivc->tx.position.
	 */
	smp_mb();

	/*
	 * Notify only upon transition from full to non-full. The available
	 * count can only asynchronously increase, so the worst possible
	 * side-effect will be a spurious notification.
	 */
	tegra_ivc_invalidate(ivc, ivc->rx.phys + tx);

	if (tegra_ivc_available(ivc, ivc->rx.channel) == ivc->num_frames - 1)
		ivc->notify(ivc, ivc->notify_data);

	return 0;
}
EXPORT_SYMBOL(tegra_ivc_read_advance);

/* directly poke at the next frame to be tx'ed */
void *tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc)
{
	int err;

	err = tegra_ivc_check_write(ivc);
	if (err < 0)
		return ERR_PTR(err);

	return tegra_ivc_frame_virt(ivc, ivc->tx.channel, ivc->tx.position);
}
EXPORT_SYMBOL(tegra_ivc_write_get_next_frame);

/* advance the tx buffer */
int tegra_ivc_write_advance(struct tegra_ivc *ivc)
{
	unsigned int tx = offsetof(struct tegra_ivc_header, tx.count);
	unsigned int rx = offsetof(struct tegra_ivc_header, rx.count);
	int err;

	err = tegra_ivc_check_write(ivc);
	if (err < 0)
		return err;

	tegra_ivc_flush_frame(ivc, ivc->tx.phys, ivc->tx.position, 0,
			      ivc->frame_size);

	/*
	 * Order any possible stores to the frame before update of
	 * ivc->tx.position.
	 */
	smp_wmb();

	tegra_ivc_advance_tx(ivc);
	tegra_ivc_flush(ivc, ivc->tx.phys + tx);

	/*
	 * Ensure our write to ivc->tx.position occurs before our read from
	 * ivc->rx.position.
	 */
	smp_mb();

	/*
	 * Notify only upon transition from empty to non-empty. The available
	 * count can only asynchronously decrease, so the worst possible
	 * side-effect will be a spurious notification.
	 */
	tegra_ivc_invalidate(ivc, ivc->tx.phys + rx);

	if (tegra_ivc_available(ivc, ivc->tx.channel) == 1)
		ivc->notify(ivc, ivc->notify_data);

	return 0;
}
EXPORT_SYMBOL(tegra_ivc_write_advance);

void tegra_ivc_reset(struct tegra_ivc *ivc)
{
	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);

	ivc->tx.channel->tx.state = TEGRA_IVC_STATE_SYNC;
	tegra_ivc_flush(ivc, ivc->tx.phys + offset);
	ivc->notify(ivc, ivc->notify_data);
}
EXPORT_SYMBOL(tegra_ivc_reset);

/*
 * =======================================================
 *  IVC State Transition Table - see tegra_ivc_notified()
 * =======================================================
 *
 *	local	remote	action
 *	-----	------	-----------------------------------
 *	SYNC	EST	<none>
 *	SYNC	ACK	reset counters; move to EST; notify
 *	SYNC	SYNC	reset counters; move to ACK; notify
 *	ACK	EST	move to EST; notify
 *	ACK	ACK	move to EST; notify
 *	ACK	SYNC	reset counters; move to ACK; notify
 *	EST	EST	<none>
 *	EST	ACK	<none>
 *	EST	SYNC	reset counters; move to ACK; notify
 *
 * ===============================================================
 */

int tegra_ivc_notified(struct tegra_ivc *ivc)
{
	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count);
	enum tegra_ivc_state state;

	/* Copy the receiver's state out of shared memory. */
	tegra_ivc_invalidate(ivc, ivc->rx.phys + offset);
	state = READ_ONCE(ivc->rx.channel->tx.state);

	if (state == TEGRA_IVC_STATE_SYNC) {
		offset = offsetof(struct tegra_ivc_header, tx.count);

		/*
		 * Order observation of TEGRA_IVC_STATE_SYNC before stores
		 * clearing tx.channel.
		 */
		smp_rmb();

		/*
		 * Reset tx.channel counters. The remote end is in the SYNC
		 * state and won't make progress until we change our state,
		 * so the counters are not in use at this time.
		 */
		ivc->tx.channel->tx.count = 0;
		ivc->rx.channel->rx.count = 0;

		ivc->tx.position = 0;
		ivc->rx.position = 0;

		/*
		 * Ensure that counters appear cleared before new state can be
		 * observed.
		 */
		smp_wmb();

		/*
		 * Move to ACK state. We have just cleared our counters, so it
		 * is now safe for the remote end to start using these values.
		 */
		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ACK;
		tegra_ivc_flush(ivc, ivc->tx.phys + offset);

		/*
		 * Notify remote end to observe state transition.
		 */
		ivc->notify(ivc, ivc->notify_data);

	} else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_SYNC &&
		   state == TEGRA_IVC_STATE_ACK) {
		offset = offsetof(struct tegra_ivc_header, tx.count);

		/*
		 * Order observation of ivc_state_sync before stores clearing
		 * tx_channel.
		 */
		smp_rmb();

		/*
		 * Reset tx.channel counters. The remote end is in the ACK
		 * state and won't make progress until we change our state,
		 * so the counters are not in use at this time.
		 */
		ivc->tx.channel->tx.count = 0;
		ivc->rx.channel->rx.count = 0;

		ivc->tx.position = 0;
		ivc->rx.position = 0;

		/*
		 * Ensure that counters appear cleared before new state can be
		 * observed.
		 */
		smp_wmb();

		/*
		 * Move to ESTABLISHED state. We know that the remote end has
		 * already cleared its counters, so it is safe to start
		 * writing/reading on this channel.
		 */
		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED;
		tegra_ivc_flush(ivc, ivc->tx.phys + offset);

		/*
		 * Notify remote end to observe state transition.
		 */
		ivc->notify(ivc, ivc->notify_data);

	} else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_ACK) {
		offset = offsetof(struct tegra_ivc_header, tx.count);

		/*
		 * At this point, we have observed the peer to be in either
		 * the ACK or ESTABLISHED state. Next, order observation of
		 * peer state before storing to tx.channel.
		 */
		smp_rmb();

		/*
		 * Move to ESTABLISHED state. We know that we have previously
		 * cleared our counters, and we know that the remote end has
		 * cleared its counters, so it is safe to start writing/reading
		 * on this channel.
		 */
		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED;
		tegra_ivc_flush(ivc, ivc->tx.phys + offset);

		/*
		 * Notify remote end to observe state transition.
		 */
		ivc->notify(ivc, ivc->notify_data);

	} else {
		/*
		 * There is no need to handle any further action. Either the
		 * channel is already fully established, or we are waiting for
		 * the remote end to catch up with our current state. Refer
		 * to the diagram in "IVC State Transition Table" above.
		 */
	}

	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED)
		return -EAGAIN;

	return 0;
}
EXPORT_SYMBOL(tegra_ivc_notified);

size_t tegra_ivc_align(size_t size)
{
	return ALIGN(size, TEGRA_IVC_ALIGN);
}
EXPORT_SYMBOL(tegra_ivc_align);

unsigned tegra_ivc_total_queue_size(unsigned queue_size)
{
	if (!IS_ALIGNED(queue_size, TEGRA_IVC_ALIGN)) {
		pr_err("%s: queue_size (%u) must be %u-byte aligned\n",
		       __func__, queue_size, TEGRA_IVC_ALIGN);
		return 0;
	}

	return queue_size + sizeof(struct tegra_ivc_header);
}
EXPORT_SYMBOL(tegra_ivc_total_queue_size);

static int tegra_ivc_check_params(unsigned long rx, unsigned long tx,
				  unsigned int num_frames, size_t frame_size)
{
	BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, tx.count),
				 TEGRA_IVC_ALIGN));
	BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, rx.count),
				 TEGRA_IVC_ALIGN));
	BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct tegra_ivc_header),
				 TEGRA_IVC_ALIGN));

	if ((uint64_t)num_frames * (uint64_t)frame_size >= 0x100000000UL) {
		pr_err("num_frames * frame_size overflows\n");
		return -EINVAL;
	}

	if (!IS_ALIGNED(frame_size, TEGRA_IVC_ALIGN)) {
		pr_err("frame size not adequately aligned: %zu\n", frame_size);
		return -EINVAL;
	}

	/*
	 * The headers must at least be aligned enough for counters
	 * to be accessed atomically.
	 */
	if (!IS_ALIGNED(rx, TEGRA_IVC_ALIGN)) {
		pr_err("IVC channel start not aligned: %#lx\n", rx);
		return -EINVAL;
	}

	if (!IS_ALIGNED(tx, TEGRA_IVC_ALIGN)) {
		pr_err("IVC channel start not aligned: %#lx\n", tx);
		return -EINVAL;
	}

	if (rx < tx) {
		if (rx + frame_size * num_frames > tx) {
			pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
			       rx, frame_size * num_frames, tx);
			return -EINVAL;
		}
	} else {
		if (tx + frame_size * num_frames > rx) {
			pr_err("queue regions overlap: %#lx + %zx > %#lx\n",
			       tx, frame_size * num_frames, rx);
			return -EINVAL;
		}
	}

	return 0;
}

int tegra_ivc_init(struct tegra_ivc *ivc, struct device *peer, void *rx,
		   dma_addr_t rx_phys, void *tx, dma_addr_t tx_phys,
		   unsigned int num_frames, size_t frame_size,
		   void (*notify)(struct tegra_ivc *ivc, void *data),
		   void *data)
{
	size_t queue_size;
	int err;

	if (WARN_ON(!ivc || !notify))
		return -EINVAL;

	/*
	 * All sizes that can be returned by communication functions should
	 * fit in an int.
	 */
	if (frame_size > INT_MAX)
		return -E2BIG;

	err = tegra_ivc_check_params((unsigned long)rx, (unsigned long)tx,
				     num_frames, frame_size);
	if (err < 0)
		return err;

	queue_size = tegra_ivc_total_queue_size(num_frames * frame_size);

	if (peer) {
		ivc->rx.phys = dma_map_single(peer, rx, queue_size,
					      DMA_BIDIRECTIONAL);
		if (dma_mapping_error(peer, ivc->rx.phys))
			return -ENOMEM;

		ivc->tx.phys = dma_map_single(peer, tx, queue_size,
					      DMA_BIDIRECTIONAL);
		if (dma_mapping_error(peer, ivc->tx.phys)) {
			dma_unmap_single(peer, ivc->rx.phys, queue_size,
					 DMA_BIDIRECTIONAL);
			return -ENOMEM;
		}
	} else {
		ivc->rx.phys = rx_phys;
		ivc->tx.phys = tx_phys;
	}

	ivc->rx.channel = rx;
	ivc->tx.channel = tx;
	ivc->peer = peer;
	ivc->notify = notify;
	ivc->notify_data = data;
	ivc->frame_size = frame_size;
	ivc->num_frames = num_frames;

	/*
	 * These values aren't necessarily correct until the channel has been
	 * reset.
	 */
	ivc->tx.position = 0;
	ivc->rx.position = 0;

	return 0;
}
EXPORT_SYMBOL(tegra_ivc_init);

void tegra_ivc_cleanup(struct tegra_ivc *ivc)
{
	if (ivc->peer) {
		size_t size = tegra_ivc_total_queue_size(ivc->num_frames *
							 ivc->frame_size);

		dma_unmap_single(ivc->peer, ivc->rx.phys, size,
				 DMA_BIDIRECTIONAL);
		dma_unmap_single(ivc->peer, ivc->tx.phys, size,
				 DMA_BIDIRECTIONAL);
	}
}
EXPORT_SYMBOL(tegra_ivc_cleanup);