Home Home > GIT Browse
summaryrefslogtreecommitdiff
blob: 98bd7de7577811e13c4a04379025f8c6e026a24d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2007 MIPS Technologies, Inc.
 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
 * Copyright (C) 2008 Kevin D. Kissell, Paralogos sarl
 */
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/smp.h>

#include <asm/smtc_ipi.h>
#include <asm/time.h>
#include <asm/cevt-r4k.h>

/*
 * Variant clock event timer support for SMTC on MIPS 34K, 1004K
 * or other MIPS MT cores.
 *
 * Notes on SMTC Support:
 *
 * SMTC has multiple microthread TCs pretending to be Linux CPUs.
 * But there's only one Count/Compare pair per VPE, and Compare
 * interrupts are taken opportunisitically by available TCs
 * bound to the VPE with the Count register.  The new timer
 * framework provides for global broadcasts, but we really
 * want VPE-level multicasts for best behavior. So instead
 * of invoking the high-level clock-event broadcast code,
 * this version of SMTC support uses the historical SMTC
 * multicast mechanisms "under the hood", appearing to the
 * generic clock layer as if the interrupts are per-CPU.
 *
 * The approach taken here is to maintain a set of NR_CPUS
 * virtual timers, and track which "CPU" needs to be alerted
 * at each event.
 *
 * It's unlikely that we'll see a MIPS MT core with more than
 * 2 VPEs, but we *know* that we won't need to handle more
 * VPEs than we have "CPUs".  So NCPUs arrays of NCPUs elements
 * is always going to be overkill, but always going to be enough.
 */

unsigned long smtc_nexttime[NR_CPUS][NR_CPUS];
static int smtc_nextinvpe[NR_CPUS];

/*
 * Timestamps stored are absolute values to be programmed
 * into Count register.  Valid timestamps will never be zero.
 * If a Zero Count value is actually calculated, it is converted
 * to be a 1, which will introduce 1 or two CPU cycles of error
 * roughly once every four billion events, which at 1000 HZ means
 * about once every 50 days.  If that's actually a problem, one
 * could alternate squashing 0 to 1 and to -1.
 */

#define MAKEVALID(x) (((x) == 0L) ? 1L : (x))
#define ISVALID(x) ((x) != 0L)

/*
 * Time comparison is subtle, as it's really truncated
 * modular arithmetic.
 */

#define IS_SOONER(a, b, reference) \
    (((a) - (unsigned long)(reference)) < ((b) - (unsigned long)(reference)))

/*
 * CATCHUP_INCREMENT, used when the function falls behind the counter.
 * Could be an increasing function instead of a constant;
 */

#define CATCHUP_INCREMENT 64

static int mips_next_event(unsigned long delta,
				struct clock_event_device *evt)
{
	unsigned long flags;
	unsigned int mtflags;
	unsigned long timestamp, reference, previous;
	unsigned long nextcomp = 0L;
	int vpe = current_cpu_data.vpe_id;
	int cpu = smp_processor_id();
	local_irq_save(flags);
	mtflags = dmt();

	/*
	 * Maintain the per-TC virtual timer
	 * and program the per-VPE shared Count register
	 * as appropriate here...
	 */
	reference = (unsigned long)read_c0_count();
	timestamp = MAKEVALID(reference + delta);
	/*
	 * To really model the clock, we have to catch the case
	 * where the current next-in-VPE timestamp is the old
	 * timestamp for the calling CPE, but the new value is
	 * in fact later.  In that case, we have to do a full
	 * scan and discover the new next-in-VPE CPU id and
	 * timestamp.
	 */
	previous = smtc_nexttime[vpe][cpu];
	if (cpu == smtc_nextinvpe[vpe] && ISVALID(previous)
	    && IS_SOONER(previous, timestamp, reference)) {
		int i;
		int soonest = cpu;

		/*
		 * Update timestamp array here, so that new
		 * value gets considered along with those of
		 * other virtual CPUs on the VPE.
		 */
		smtc_nexttime[vpe][cpu] = timestamp;
		for_each_online_cpu(i) {
			if (ISVALID(smtc_nexttime[vpe][i])
			    && IS_SOONER(smtc_nexttime[vpe][i],
				smtc_nexttime[vpe][soonest], reference)) {
				    soonest = i;
			}
		}
		smtc_nextinvpe[vpe] = soonest;
		nextcomp = smtc_nexttime[vpe][soonest];
	/*
	 * Otherwise, we don't have to process the whole array rank,
	 * we just have to see if the event horizon has gotten closer.
	 */
	} else {
		if (!ISVALID(smtc_nexttime[vpe][smtc_nextinvpe[vpe]]) ||
		    IS_SOONER(timestamp,
			smtc_nexttime[vpe][smtc_nextinvpe[vpe]], reference)) {
			    smtc_nextinvpe[vpe] = cpu;
			    nextcomp = timestamp;
		}
		/*
		 * Since next-in-VPE may me the same as the executing
		 * virtual CPU, we update the array *after* checking
		 * its value.
		 */
		smtc_nexttime[vpe][cpu] = timestamp;
	}

	/*
	 * It may be that, in fact, we don't need to update Compare,
	 * but if we do, we want to make sure we didn't fall into
	 * a crack just behind Count.
	 */
	if (ISVALID(nextcomp)) {
		write_c0_compare(nextcomp);
		ehb();
		/*
		 * We never return an error, we just make sure
		 * that we trigger the handlers as quickly as
		 * we can if we fell behind.
		 */
		while ((nextcomp - (unsigned long)read_c0_count())
			> (unsigned long)LONG_MAX) {
			nextcomp += CATCHUP_INCREMENT;
			write_c0_compare(nextcomp);
			ehb();
		}
	}
	emt(mtflags);
	local_irq_restore(flags);
	return 0;
}


void smtc_distribute_timer(int vpe)
{
	unsigned long flags;
	unsigned int mtflags;
	int cpu;
	struct clock_event_device *cd;
	unsigned long nextstamp = 0L;
	unsigned long reference;


repeat:
	for_each_online_cpu(cpu) {
	    /*
	     * Find virtual CPUs within the current VPE who have
	     * unserviced timer requests whose time is now past.
	     */
	    local_irq_save(flags);
	    mtflags = dmt();
	    if (cpu_data[cpu].vpe_id == vpe &&
		ISVALID(smtc_nexttime[vpe][cpu])) {
		reference = (unsigned long)read_c0_count();
		if ((smtc_nexttime[vpe][cpu] - reference)
			 > (unsigned long)LONG_MAX) {
			    smtc_nexttime[vpe][cpu] = 0L;
			    emt(mtflags);
			    local_irq_restore(flags);
			    /*
			     * We don't send IPIs to ourself.
			     */
			    if (cpu != smp_processor_id()) {
				smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
			    } else {
				cd = &per_cpu(mips_clockevent_device, cpu);
				cd->event_handler(cd);
			    }
		} else {
			/* Local to VPE but Valid Time not yet reached. */
			if (!ISVALID(nextstamp) ||
			    IS_SOONER(smtc_nexttime[vpe][cpu], nextstamp,
			    reference)) {
				smtc_nextinvpe[vpe] = cpu;
				nextstamp = smtc_nexttime[vpe][cpu];
			}
			emt(mtflags);
			local_irq_restore(flags);
		}
	    } else {
		emt(mtflags);
		local_irq_restore(flags);

	    }
	}
	/* Reprogram for interrupt at next soonest timestamp for VPE */
	if (ISVALID(nextstamp)) {
		write_c0_compare(nextstamp);
		ehb();
		if ((nextstamp - (unsigned long)read_c0_count())
			> (unsigned long)LONG_MAX)
				goto repeat;
	}
}


irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
{
	int cpu = smp_processor_id();

	/* If we're running SMTC, we've got MIPS MT and therefore MIPS32R2 */
	handle_perf_irq(1);

	if (read_c0_cause() & (1 << 30)) {
		/* Clear Count/Compare Interrupt */
		write_c0_compare(read_c0_compare());
		smtc_distribute_timer(cpu_data[cpu].vpe_id);
	}
	return IRQ_HANDLED;
}


int __cpuinit smtc_clockevent_init(void)
{
	uint64_t mips_freq = mips_hpt_frequency;
	unsigned int cpu = smp_processor_id();
	struct clock_event_device *cd;
	unsigned int irq;
	int i;
	int j;

	if (!cpu_has_counter || !mips_hpt_frequency)
		return -ENXIO;
	if (cpu == 0) {
		for (i = 0; i < num_possible_cpus(); i++) {
			smtc_nextinvpe[i] = 0;
			for (j = 0; j < num_possible_cpus(); j++)
				smtc_nexttime[i][j] = 0L;
		}
		/*
		 * SMTC also can't have the usablility test
		 * run by secondary TCs once Compare is in use.
		 */
		if (!c0_compare_int_usable())
			return -ENXIO;
	}

	/*
	 * With vectored interrupts things are getting platform specific.
	 * get_c0_compare_int is a hook to allow a platform to return the
	 * interrupt number of it's liking.
	 */
	irq = MIPS_CPU_IRQ_BASE + cp0_compare_irq;
	if (get_c0_compare_int)
		irq = get_c0_compare_int();

	cd = &per_cpu(mips_clockevent_device, cpu);

	cd->name		= "MIPS";
	cd->features		= CLOCK_EVT_FEAT_ONESHOT;

	/* Calculate the min / max delta */
	cd->mult	= div_sc((unsigned long) mips_freq, NSEC_PER_SEC, 32);
	cd->shift		= 32;
	cd->max_delta_ns	= clockevent_delta2ns(0x7fffffff, cd);
	cd->min_delta_ns	= clockevent_delta2ns(0x300, cd);

	cd->rating		= 300;
	cd->irq			= irq;
	cd->cpumask		= cpumask_of(cpu);
	cd->set_next_event	= mips_next_event;
	cd->set_mode		= mips_set_clock_mode;
	cd->event_handler	= mips_event_handler;

	clockevents_register_device(cd);

	/*
	 * On SMTC we only want to do the data structure
	 * initialization and IRQ setup once.
	 */
	if (cpu)
		return 0;
	/*
	 * And we need the hwmask associated with the c0_compare
	 * vector to be initialized.
	 */
	irq_hwmask[irq] = (0x100 << cp0_compare_irq);
	if (cp0_timer_irq_installed)
		return 0;

	cp0_timer_irq_installed = 1;

	setup_irq(irq, &c0_compare_irqaction);

	return 0;
}